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Preface

The purpose of this thesis was to develop and evaluate the
performance of a run time math library for those architectures conforming
to MIL-STD-1750A, and is intended to serve as a benchmark for future
contractor development. The routines implemented include all circular
trigonometric functions and their inverses. Appendix A contains the
descriptions of pseudo-operations I've used in explaining the design of
these functions, and will prove useful to you as you try to follow my
logic.

In developing and doing the performance evaluation of the math
library, and in learning how to use the different support tools and
hardware, | have had a great deal of help from others. In that respect | am
deeply indebted to my thesis advisor, Dr. Panna Nagarsenker, for her
continuing patience and assistance during those times of confusion and
near panic. | am also indebted to Mr. Bobby Evans and Mr. Dale Lange, from
the sponsoring organization, for all the help that they gave me in getting
all the equipment and outside information that | needed. A special thanks

also goes out to my friend Heidi for all her support and patience.

Steven A. Hotchkiss
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This project produced a run-time math library for the MIL-STD-1750A
embedded computer architectures. The math library consists of the
circular trigonometric functions and their inverses. In addition, the steps
required for the performance analysis of the math library have been
outlined.

Several approximation methods were investigated, but the Chebyshef
Economization of the Maclaurin series polynomials, and rational
approximations derived from the second algorithm of Remes were
determined to be the best available. Each functions implementation was
designed to take advantage of features of MIL-STD-17S0A architectures.
The recommended test procedures will provide measures of the average

and worst case generated errors within each approximation.
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Background

h The Air Force has a vested interest in reducing the life-cycle costs
of its avionics weapon systems. Standardization of high order languages
and an Instruction Set Architecture (ISA) is one way the Air Force feels
h it can reduce these costs. In the past, a major cost contributor was the
| proliferation of unique avionics systems and subsystems. Costs increased
with respect to: purchasing and inventorying small-lot spares at rnany
?] bases; training technicians to maintain complex and/or unique flight and

\ test equipment: developing and maintaining software development

facilities; training programmers to write application programs in seidom
used highv order languages: and in training programmers to maintain
software (especially operating systems) in seldom used machine
languages. (1: 8.1)

MIL-STD-1750A defines a standard 16-bit instruction set
architecture intended primarily for avionics weapon systems. The major
cost advantage of this standard ISA will come in the form of common
support software tools. An extensive set of support software tools has
already been developed and includes: 3 1750A assembler/crossassembler;
a J73 compiler with 1750A ISA code generator; linker/ioader programs;
and 3 17S0A acceptance test program (1: 8.4). Other cost benefits will be
realized through the independent development of software and hardware,

(2:1) and common maintenance and test equipment. (3:168)

Standardization of lanquages will also have an impact on cost




reduction. “In 1978 the Department of Defense had in its inventory,
software written in about 150 different programming languages. This
linguistic proliferation increased maintenance problems due to

programmer training requirements and lack of support tools for many of

the languages*. (1:6.1) The D.0.D. and Air Force recognized this as a

problem, and they took steps to correct it. D.0.D. Instruction 5000.31,

PR
X R R
- [ § i
Y Aw

“Interim List of D.0.D. Approved High Order Programming Languages®,
states that only approved languages may be used for new defense system

software. JOVIAL is one of the languages approved by this instruction.

e
e * et PR '}
Lot - I O T S S
PURIINCIPIP N PLPSF S S0

As previously mentioned, the development of a standard ISA such as
MIL-STD-1750A will help reduce total life-cycle costs of Air Force
avionics weapon systems. This reduction will come partially through the
use of common support software tools, many which have already been
developed. It was also mentioned that one of the support software tools
already developed includes a JOVIAL compiler that generates 1750A ISA
code; however, a math library containing all the algebraic and

trigonometric functions required by these languages has not been

developed. The sponsor for this thesis is the Aeronautics System Division, ]

Language Control Branch. They are the D.0.D. JOVIAL and ADA compiier

validation site, and are responsible for the development of such libraries. :
Completion of this thesis will help the Air Force reduce avionics weapon
systems cost through the development of a math library for software '-r-«

support of all 1750A systems.




AN RN ST e S i Re 4% D lia 0 2% 95 A4 S LR A YA 4]
'.-'-

Problem

At the time of this writing there are no math libraries written that
take advantage of the 1750A instruction set. In keeping with the intent of
recent standardization policies of both the D.0.D and Air Force, the library
provided is written in the D.0.D approved language JOVIAL. The coding of

the library was only a small effort of this thesis. Most of the detail has

gone into verification ,validation, and performance evaluation of the j
product. Inasmuch, the focus of this report is divided into two primary *
categories; software development and software testing. :‘;

Math libraries are important because they provide the programmer
several tools that serve as building blocks for applications. Math libraries
prevent programmers from having to reinvent the wheel each time a L_j
function is needed. Libraries also provide a means for using functions
that take full advantage of a particular computer architecture computer w
architecture. E,:

The design of a procedure for computing the value of functions is not ‘
mathematically complete in itself. An understanding of a computer J
architecture’'s operation is necessary to insure that the computation of LJ
any given function is as efficient as possibie, while also providing the j
highest degree of accuracy. Such architectural considerations include:
word size; number of bits in both the exponent and coefficient fields of a !"'“
floating point number, the number of integer and fraction bits in \
fixed-point numbers, the way mathematical operations are performed by r1

the architecture, memory size of the architecture, and execution time.

Other considerations include overflow, underflow, and precision. These

........................
........................
. [ T N T S P SR SRR A S S R




considerations for the functions define the problem addressed by this

thesis effort.

cope

This effort was limited to the design, code, and performance
evaluation of the circular and inverse circular trigonometric functions.
The functions were included in a math library targeted for MIL-STD-1750A
computer architectures, and are the ones typically found in most FORTRAN
libraries. Specifically, these functions include: sine (sin), cosine (cos),
tangent (tan), cotangent (cot), arcsine (asin), arccosine (acos), and
arctangent (atan and atan2). |

All functions have been written to either accept and return double
precision fixed-point values, or to accept and return extended precision
floating-point values. Floating-point functions are distinguished from the
fixed-point functions by the name used to invoke them. All floating-point
functions have an "f* concatenated to the end of them: otherwise, they
have the same names as those used by the fixed-point functions. For
example: the fixed-point sine function is invoked by using the name "sin®,
and the floating-point sine function is invoked by using the name “sinf*.

Also provided are performance summaries for each of the functions,
and algorithms that may be used to determine the polynomial coefficients
for computing any of functions addressed by this paper. These algorithms
can be found in Appendix A, and produce coefficients that are valid for any

nonvector architecture.
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During a design review held in May of 1985, it was made clear that

certain events could cause overflow errors and underflow errors, and

division by zero. Since the functions are to be used within an embedded

avionics weapon system, it is necessary that such conditions are detected L\
and handled gracefully. The consensus of opinion from ail participants of :-_:;:'i::}
the design review was, that the functions should not be aborted, and that i‘f:
default values should be returned. The error conditions and values returned
are discussed in the individual design sections of this thesis. This
constitutes an important assumption on how to handle such error E,:,
conditions, and bears further investigation before implementing on a Lk
real-time system. ,

Another factor discussed during the design review was, that there is if—-

a need for both fixed-point and floating-point functions. Floating-point

,.
oA
b4

functions are more precise than fixed-point algorithms, but take longer to

. RN
L g PRGN e
PR R
f 1SS
N LLPL L L
. L 2C A R N M o

execute. Conversely, fixed-point functions don't have the precision, but are
much faster. In addition, it was mentioned that many avionics applications

also use what is termed as pi-radians. Pi-radians are angular units of

measure expressed in terms of multiples of pi, and are equal to radian =B
measures divided by pi. For example: 180° is equivalent to 3.141596
radians, or 1.0 pi-radian. If the algorithms use pi-radian measure rather l‘._.
than radian measure, there is no need for overflow condit on checks, and \
therefore, a significant amount of work is eliminated from the domain \
reduction computations . L

''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

...........................
~~~~~~~~




As stated earlier, algorithms for both fixed-point and floating-point
type functions have been written. Because of time limitations, both
methods of unit measure could not be implemented, and only the

fixed-point algorithms use the pi-radian metric. The assumption is that if

the need arises, this thesis can serve as a guide for implementing both

function types in either unit of measure.

General Approach

The approach used during this thesis effort, is termed the
"logicalized” model of a software system development cycle. This approach

was considered a better alternative to the more commonly used

PN A g P g g e e oy,
o e e L ‘. ‘. L L

"waterfall* method of software system development. The waterfall
consists of the apparently neat, concise and logical ordering of a series of
steps that must be accomplished to obtain a final software product. These
steps are performed in order and include: systems analysis, requirements
definition, preliminary design, detailed design, coding, testing, and
implementation.

The logicalized model is similar to the waterfall model just
described, but is more concerned with the probiem definition side of the
cycle (see figure 1). This approach makes it more useful for eliminating
errors that are typically occur during the waterfall's requirements
definition and design phases. Errors generated during these phases of the
waterfall model typically occur because designers have a tendency to shift
between (abstract) high-level design issues and (physical) implementation

considerations . Thayer (S: 335-41) and Boehm et al.
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PHASE INPUT TASK QuTRUT

ANALYSIS  Interviews, Madel problem Abstract model
rangam data, and implied af 1mplied
and S0 an solution solution

DESIGHM Abstract model of Model an Abstract model
implied solution implementable  of impiementable
and environmental solution solution
constraints

CODE ADstract model of Implement Executable
an implementable solution solution

solytion

Table 1 Information Flaw of the Logicalized Saftware
Development Cycle

(6: 125-33) made it clear that these problems existed , and made the
point that design errors not only outnumbered other errors, but that they
were also more persistent. For that reason, more attention was given to
the top-down decomposition and abstract (logical) modeling of this
particular software system. Such a structured approach recommends a
dichotomy between the logical design issues, and implementation issues.
The information flow of a logicalized model is summarized in Table
1, and is "analogous to an artist's conception of a building: There is
enough information to allow the customer and designer to communicate

and to establish the buildings pluses and minuses, but not enough detail to

begin construction. A series of reviews, refinements, and the imposition
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of local building ordinances for example, are necessary before that
construction can start.” (7:14)

Therefore, the approach taken for this project was similar to that
just described. The ASD/Language Control Branch established the
requirements for a MIL-STD-1750A run-time math library written in the
D.0.D approved high-order language JOVIAL. During a design review and
several other meetings, certain design considerations were refined. From
there, a “logical® model was established as a baseline. This was
accomplished by using the refined probiem statement, and researching the
different methods for approximating the different trigonometric functions.

The baseline model served as a reference from which ail decisions
regarding actual implementation could be made. Before preceding to the
next phase of development two such decisions had to be made. These
decisions were to determine which testing methods and which
performance evaluation techniques would be used after coding was
complete. These decisions determined what sort of tests would catch all
possible errors, and determined what techniques could be used to establish
a confidence level for the final product.

Up until this point, the abstract model has been devoid of any
implementation considerations. However, after it was clear that the
abstract design was complete and consistent with the requirements, it
became necessary to consider changes to fit the problem into the
MIL-STD-1750A environment. Before any changes could be made, it was
necessary to complete the following steps: study the architecture and ISA

defined by MIL-STD-1750A; determine what resources were available,

such as software support tools and hardware; and then to learn how to use




the available resources. From there, it was possibie to develop an abstract
model of an implementable solution. This model took advantage of those
environmental factors that affected the speed and accuracy of computation
for each function approximation.

The major subset of the logicalized software engineering
methodology just described is called structured programming. Structured
programming can be understood as the decomposition of a problem in order
to establish a manageable problem structure. The highest conceptual level
represents a general description of the problem, and each level of
decomposition provides more detail into the problem. This decomposition
is carried out until the problem is almost in coded form, and is often

called a stepwise refinement of the problem. All implementation

considerations are left until the lowest levels of refinement.

The goals of structured programming must be: to minimize the
number of errors that occur during the development process; to minimize
the effort required to correct errors in sections of code found to be
deficient; upgrading sections when more reliable, functional, or efficient
techniques are discovered: and to minimize the life-cycle costs of the
software. (8:32) In addition it must reduce the complexity of the problem.

Structured flowcharting is a technique used to support these
structured programming concepts and goals, and is “designed to reduce
labels and unstructured branching, encourage a single entry/single exit
approach, aid in the use of top-down design techniques, and enhance
modularization. The approach encourages the designer to conceive of the
system in high-level constructs and not in terms of individual detailed

statements.” (7:116) The structured flowcharting technique was used
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throughout the development of this project, not only because of the
aforementioned reasons, but also for its simplicity and understandability

from a reviewer standpoint.

Sequence of Presentation

This thesis addresses the the design and performance evaluation of a
run-time math library that is targeted to MIL-STD-1750A architectures.
The requirements definition for this problem has already been discussed
(Chapter 1 - Problem/Scope). The next topic discussed is the theoretical
development of this thesis effort (Chapter 2). In particular, abstract
design considerations for each of the implemented functions is discussed.
The next area for discussion is the detailed design considerations that
were made during implementation of the library functions (Chapter 3). The
last aspects covered in this report are the test and performance
evaluation methods used.

Appendices include algorithms useful for determining the
coefficients of each of the functions (appendix E), pseudo-code operations
used in the structured flowcharts (Appendix A), source listings for the
implemented functions (Appendix B), support software developed in
conjunction with this thesis (Appendix C), and the VAX VMS command files

required to compile link and run the developed product (Appendix D).
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1. Theoretical Development

General Discussion

The purpose of this thesis was to create and analyze trigonometric
functions developed for 1750A architectures. This chapter is concerned
with the design theory of the algorithms used to approximate those
functions. Within the given constraints, the emphasis for each of the
designs is to compute results as quickly and as accurately as possible.

One way of computing a value quickly is to select an approximation
that converges rapidly towards the value of the true function, f(s). There
were several methods of approximation that were considered; however, the
polynomial and relational approximations described by Cody and Waite
(4: 17-84) were found to be the best. The coefficients given by Cody and
Waite were derived by using Chebyshev Economization of the Taylor series
for each function for the approxinﬁation itself, or as a starting point for
computing a rational approximation via the second algorithm of Remes.
An excellent reference for Cnebyshev Economization is Conte and de Boor
(9: 265-273), and an excellent reference for the second algorithm of
Remes is Ralston. (10: 301-306)

Another means of reducing the amount of processing time required to
compute a result is to take advantage of certain aspects of the computer’s
architecture, as well as the different execution times for different
instructions within the ISA. For example, incrementing the exponent field

of a floating-point value is not only faster, but more accurate than the

...............................................................
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equivalent operation of multiplying by two, or examining the sign bit of a

i variable is faster than comparing the entire value to zero. These

techniques have been used, and are referenced in the design descriptions

as pseudo-operations. These operations are equivalent to those described
by Cody and Waite (4: 9), and are listed in Appendix A.

The accuracy of an approximation may be dependent upon the domain

. over which the function is approximated. For example, if the domain of an

approximation is halved, the error may be reduced by a factor of about

2%+ ror al| polynomials of degree n. (11: 539) This can be shown to be

true for most functions, but not all of them. Domain reduction has no
effect on accuracy in approximations of certain functions; however, it
still serves as an excellent guide when designing an application. This is
. ._, due to the way computer architectures perform operations and store
R mathematical values for floating-point numbers. The most significant
E bits of a number are always maintained, and since only a finite number of
P bits are available to represent the value, it is possible that bits from a
fractional representation may be lost during operations on large numbers.
Fortunately, the trigonometric functions lend themselves to domain
i reduction through the properties of periodicity, symmetry, and
antisymmetry. This allows function arguments to be reduced so that a
more accurate approximation may be calculated than what is possible
. without argument reduction. How these properties are actually used in L——4
_ domain reduction depends on the function, and are described in the
? following subsections. E__?
S D
2 )
2 )
: 3 =
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The MIL-STD-1750A ISA doesn’t call for the implementation of the
elementary functions as standard instruction operators, so it is necessary
to design software routines of optimum efficiency to replace them. The
word “optimum” could be given a variety of precise definitions, but
presumably it refers to an average execution time and storage space.
Unfortunately, there is no known way to derive or prove such an "optimal”
design. For these reasons, the search for the appropriate approximation
technique was limited to polynomial and rational approximations.

Some of the most popular methods of approximation used are called
Chebyshev approximations. Chebyshev approximations are often referred
to as "minimax” approximations because they are used to minimize the
maximum “error” between the true function f(x), and the approximation
of f{(x). However, these methods of approximation are not without their
problems, and there is a price, even though it is small one, to be paid for
using them. For example, the sum-of-squares of the errors in a Chebyshev
approximation will be higher than if a least-squares method of
approximation is used. However, since Chebyshev approximations assure
that an error is never greater than a given amount, they were selected by
this study.

Polynomials. The first class of approximations discussed are

poiynomials, and are the simplest of all the classes of approximations

considered. The most important subclass of the polynomials is the class
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1, (Chebyshev), and are polynomials not exceeding degree n. The

Chebyshev polynomials are especially important, and gave rise to the
general concept of Chebyshev “approximations” discussed in the preceding
paragraph.

The motivation for using Chebyshev polynomials over all other
polynomials is their property of least maximum error, and their error
behavior over the entire interval of the approximated function. Through
the use of Theorem 1, the Alternation Theorem given below, Chebyshev
was able to prove for all the polynomials of degree n with a leading
coefficient of 1, that the Chebyshev polynomial divided by 2 %' has the
least maximum error in the interval {-1,1]. In other words, no other
polynomial of the type mentioned will have a smaller error than
ra(x)/z"‘. In order for a poiynomial P, (>0 10 be considered a Chebyshev
approximation of the function {(x), the theorem requires that the

maximum discrepancy between f(x) and P_(x) occur with alternating

signs at n+2 points over the interval [-1,1].

Alternation Theorem: The polynomial P, of degree<n that (1)
best approximates { is characterized by the existence of at

least n+2 "points of alternation”

The other motivation for the use of Chebyshev polynomiais is that
its generated errors are more well behaved than the errors generated by
other polynomials. For example, approximations, based on the Maclaurin

series whose ir..erval includes zero, have errors that are very nonuniform
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-- small near the middle, but very large at the end points. It is more

desirable to use an approximation whose behavior is more uniform instead

b;‘:
N
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e
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of powers of x. Since, as stated in Theorem 1, the Chebyshev
polynomials spread the error over the entire interval, they provide this
more desirable behavior.

Defipition of the Chebyshev Polynomials. The Chebyshev polynomials
form an orthogonal set, and are defined by the following equation.

T4 (%) = cos (n8) = arccos (x) (1)

8
n=12...

From elementary trigonometry, cos(n8) is a polynomial of degree

n in cos(8), and cos(arccos(x)) = x; therefore, it follows that the
Chebyshev polynomials defined by  T,(x) = cos(n arccos(x)) are
polynomials of degree n.

By substituting arccos(x) for 8 and t,(x) for cos(n arccos(x))

in the identity function shown in equation (2), the recurrence relation

defined in (3) is formed.

cos ((n+ 1)8) + cos ((n - 1)8) =2 cos (8) cos (nd) (2)
Tas1(%) = 2% To(x) = Tgoq (%) (3)
Let T,=1 and T, = x then from the recurrence relation ;55:3,-]

defined in (3), successive polynomials of greater degree can be generated

as in column A of Table 2.

——
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Table 2 (A} Chebyshev Polynomials; (B) Powers of Chebyshev Polynamials e
3

Y AL LR
f L P

. T Gt
z ety

By using the results in column A of Table 2, the powers of the =

Chebyshev polynomials can be found. That is, it is possible to express the

powers of x in terms of Ta- AN example of the powers of T are

.o B e & o . . .
O .'{' y el .
vt A [

P P
ALl R !

shown in Table 2 column B  Appendix E contains an aigorithm that
generates both the Chebyshev polynomials, and their powers.

Chebyshev Economization. As already mentioned, the Maclaurin
series can be used to approximate many functions. In addition to the
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disadvantages that have already been mentioned for using this series as an
approximation, the Maclaurin series aiso converges very slowly. That is,
it takes several multiplications and additions to obtain a desired
accuracy. One way of obtaining a lower degree polynomial, and still
maintain the desired accuracy, is to use a technique that is called
“telescoping” or “Chebyshev Economization”. In other words, the

polynomial can be expressed in a manner similar to that shown in (4).

Py(x) =dytolx) + ...+ dyT (4)
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To compute the economized polynomial approximation to the function i:‘
f(x) of absolute accuracy € on the interval [-1, 1], use the following "
procedure as outlined by Conte et.al. (9: 271-272) *‘
Step 1. Get a power series expansion for {(x) valid on ([-1, 1}
typically, calculate the Maclaurin or Taylor series expansion for f(x) E;
around %= 0. L.
Step 2. Truncate the power series to obtain a polynomial as in (S), "
which approximates f(x) on [-1, 1] within an error ¢, where ¢, is ""
smaller than €, and ¢, is defined as in (6). The result of ¢  is the
maximum absolute value, within the interval [-1, 1], of the product of E\‘_
the first truncated coefficient, x to the power of n+ 1, andthe n+ |
derivative of the function {(x).
L
Pix)=ag+ax +...+ax" (5)
g = Ry(x) = a x=1 { D (x) (6)
Step 3. By making use of a table similar to that shown in Table 2
»h column B, expand the polynomial P,(x) into a Chebyshev series as
b

defined in (4). In other words, substitute the far right-hand-side of the

equations in Table 2 column B, with the appropriate powers of x
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contained in the polynomial formed by Step 2 of this algorithm. The

result is similar to that shown in (7), but of a greater degree.

Step 4. Retain the first k + 1 terms in this series, i.e. find
equation (7), choosing k as the smallest possible integer such that

equation (8) holds true.
PLx) = dyTy(x)* ... +dT, (7)

Egt Gy * ... *d <€ (8)

Step 5. Convert the result of Step 4 into a power series polynomial
similar to (5), by making use of a table similar to that in Tablie 2 column
A. In other words, substitute the right-hand-side values of Table 2

column A, into the equation formed by Step 4. Simplify the result.

Bational Approximations. In most instances, rational approximations
will generate a least maximum error that is as small or smaller than a

Chebyshev polynomial, and will also cost less in terms of the number of
multiplications and additions required to compute them. Therefore, they
deserved attention in this study.

As stated earlier, the approximation techniques considered by this
thesis are classified as Chebyshev approximations. These methods,
through their exploitation of Theorem 1, provide approximations whose

maximum error is less than those generated by other techniques. There
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f(x), m,k, [a,b] Lo
Ca ... C B
0 N _’ o
Calculate the Pade S
: approximation Ry iX) L
’ and the members of S
the sequence
'Y Calculate the economized E -
S approximation
. - o r
: fvm,k':f"‘:'

Calculate the minimum
maximum error appraximation N

by the algorithm in this S
section using CukiX) as B
the initial approximation

Figure 2 Calculation of Remes Rational Approximations :;;"-_:




are several algorithms that generate rational approximations that can be

considered Chebyshev approximations: however, the ones that generate the
most uniform approximations are those generated by the second algorithm
of Remes. This algorithm is easily automated, and is described in detail
by the foilowing subsection.

The Second Algorithm of Remes. The method used in this
description is similar to that outlined by Ralston (10: 301-305), and is
summarized in Figure 2.

Let f(x) be a continuous function that is to be approximated over the
the interval [a, b), and let the interval include the point 0.0
Furthermore, let (9) equal the error of any rational approximation of the
form shown in (10).

Fay(®) = MaxX | f() = Ry 4( | 9




Step 1 of the algorithm names the input required for this algorithm.
The input value f(x) is the function being approximated. If the aigorithm
is being run on a machine with higher precision than the error for which
the function is being approximated, then the built-in functions of the
machine can be used for f(x). [f the machine that the aigorithm is to run
on is of the same precision for which the approximation is to be made,
then a reasonable substitute, such as a truncated power series that is of
equal or greater precision than what is being approximated, can be used.

The other inputs include: m, k, [a, bl and C,...Gg. The values

m, and k represent the degree of the polynomials found in the
numerator and denominator, respectively. The interval [ a, b ] is the

interval for which the approximation is valid, and should include the point

zero, as it will allow the coefficient by, of the denominator, to always

be one. The values C, . .. Cg represent the first N+ 1 coefficients of

the power series polynomial that is being converted to a rational
approximation. The value N represents the sum of the degree of the
polynomials used in the numerator and the denominator (m + k).

The second step of the algorithm is to compute a series of Pade

approximations and their error coefficients. The Pade approximations are

of the form depicted in (11), with the restrictions that 0 <i< m and

0¢<j-i<k. For example, the sequence of Pade approximations computed

for an R,, approximation would only include R®g(x), R®| ((x),

r
R, (%), R, (x), and R®,,(x). The error of the approximations is 7
equal to the first power of x truncated from the power series, multiplied 1
S
-
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by the error coefficients shown in (12). The error calculations used wouid
only include: d(o,O)l' d(!.o)z' d(l.l)s' d“’”‘. and d(z.z)s )

. F".:"i}(xi
R i) = 2~ i =0 N-1 (11
\ilj_i L ¥ - {.} ] ] - TR - " s
Q,‘l,’ 'l‘x]'
{mk} X o
i = > C . (12
Ayey T = L‘I-I+1-jb1 12)

The coefficients for each of the sequence of Pade approximations are

- computed using (13) and (14). Equation (13) forms a set of m linear
A equations, which when solved, determines the value of the coefficients
- (Y used in the denominator. Those values can then be directly substituted
;: into the set of equations formed by (14), and will determine the value of
; the coefficients for the numerator.

§ S

j";f)'-dl.]-s-jbj = 0 s=01,.. ., N-m-1 {120
- (Cij=0 10]<0, ty=1)

]

:V by _ \ .
¢ a, = Zcr-jbj ;-0, 1,.A.:_.m (14)
' 120 (b’=0 1f] » K )
‘ The third step of the Remes algorithm is to compute the economized
E_ : approximation Cu(x). To complete this step, it is necessary to compute
4
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the Chebyshev polynomial Ty,,. This polynomial can be determined by
using equation (3) of the previous subsection. Once the coefficients of

Tywy are found, then the values y from (15) can be directly substituted
into (16), and thus solve Gy y(x). The value t in(15) is the coefficient
for ulin Tysq(W). The rational approximation must also be normalized,
that is, the numerator and denominator must be divided by b, such that

by will remain equal to 1.

{mXk} ) o PN
Y, = ~dyn, tpr2t j=0.. N1 (157
{mk}
y et t;‘+1
1y 2
R )
for N 4 N ~ + R
- PulX) * 2 Y B (x) Yy (16)
O Xt =
m kN I‘I.--l ..fj".
QplX) *+ & Yy QXD

The final step of the Remes algorithm is an iterative one. Now that

"'.
pragy.
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the initial approximation to the function has been found, it becomes

necessary to find the N + 2 points of alternation. This can be done

‘alala'a 4 A

through interpolation, or by dividing the interval into several small pieces

4
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and solving for each point on a division. This method works, and all that

is necessary is a little bookkeeping to maintain a list of the N+ 2
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points of alternation. This step consists of the following three
procedures.

Procedure 1. Solve the system of N+ 2 equations for the N+ 2
unknowns 2, ®, ..., 3, @ b (@, . . b D and E® as shown in
expression (17). Note that E® is the magnitude of error in the
approximation at each of the points x!® | and for the first iteration

can be assumed to be 0.

AW

—
Ll
(=)

-~ a; | 'xgn}]j _
™ - = (-1)'E (17

(i

e

Procedure 2. Find hy(x) as shown in (18). The function hy(x) then
has a magnitude of |E®| with alternating signs at x, i=0,... N+ 1.
In the neighborhood of each x,‘®, there is a point x{? at which hy(x)
has an extremum of the same sign as that of f(x) - R \(x)
at  x(® . Replace each x,(® by the corresponding xS . If x . the
point at which hy(x) has its maximum magnitude, is one of the points
%47, do not perform procedure 3. If not, replace one of the points x,

by x insuch a way that hy(x) still aiternates in sign on the points

1
x D
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Procedure 3. Repeat procedures | and 2 using x4, . .., xg, ¥

from (17). This process generates a sequence of rational approximations
which will converge to an optimum if the initial extrema were

sufficiently close.

Desian Considerati

Sin and Cos. Close examination of figures 3a and 3b reveals a
relationship that can be used to reduce the amount of storage space
required by the routines that compute the values of these two functions.
The relationship is expressed in (19). Therefore, by adjusting the argument
that is passed to the Cos function, both it and the Sin function can be
written as short linkages to another procedure that performs a majority

of the calculations.

cos (&) =sin ( |«| +n/2) (19)

The three properties discussed in the preceding section, periodicity

symmetry and antisymmetry, are illustrated in figures 3a and 3b . These
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Figure 3 Perodicity, Symmetry, antiSyrmmetry, (dentity
Properties for: (a) sin; (b} cos

properties are exploited to reduce an argument to within the
smallest possible domain of values accurately representing sin(x) or
cos(x) for all « . By the periodicity property shown in (20) and displayed
in Figure 3a, it is easy to see that the argument « can be reduced
to within the interval [-2m, 2m). To compute sin(x), determine
B such that o =P+ 21k , wherek is an integer. Then sin{x) equals

sin(B).

sin (&) = sin (x + 2M) (20)
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i Examination of Figure 3a also illustrates that sin (x) is

g antisymmetric about the point zero-pi. That is, sin(«) equals -sin(-«)
3 By noting the sign change of the result, this property can be used to
reduce an argument to within the interval [0, 2m]. The interval (m,
. 211 in sin{«) is also antisymmetric with respect to the interval [0, 7.
Therefore, by noting the sign change of this result and the relationship

shown in (21), « canbe set to « -7t . The argument is then reduced to

within the interval [0,7].

sin (« *+ 70) = -sin (x) (21)
Lastly, examination of Figure 3a also illustrates that sin(«) is
.’ b symmetric about the point 7t/2. As shown in (22), the argument « can be

reduced to within the interval [0, /2] , by setting « to T-« .

= sin (« + 71/2) = sin (/2 - &) (22)

i

s Tan and Cot. As with the sin and cos functions, close examination of L:!
; the graphs for Tan and Cot (figures 43 and 4b) reveal a relationship that
can be used to reduce the amount of storage space required to implement ‘
. , both functions. The relationship is expressed in equation (23). Therefore, L_;‘
| by flagging which routine was originally called, both routines can serve as ]
¥ _1
' 28 S
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short linkages to another procedure that performs a majority of the

calculations.

ot (@) = 1 / tan (@) 23)
»

T

The properties of periodicity and antisymmetry are also illustrated :

I in figures 4a and 4b. These properties are exploited to reduce an argument 1
to within the smallest possible domain of values accurately repre- Lﬁ;
senting tan(x) . By the property of periodicity shown in (24) and displayed
in Figure 4a, it is easy to see that the argument « can be reduced to LM

within the interval [-m/2, t/2]. To compute tan(x), simply determine i

B such that o« =P+ 7k , where kis an integer. Then tan(«) equals

tan(@). -

tan (cc) = tan (et + 1) (24)

Examination of Figure 4a alsc illustrates that tan(x) is S

antisymmetric about the point zero-pi. That is, tan(x) equals tan(-«) . By :

noting the sign change of the result, this property can be used to reduce L__j

the argument to within the interval [0, m/2]. i

Knowledge of plane trigonometry will allow reduction of the g

argqument to within an even smaller interval. Let « be any angle whose L-j

vertex is at the origin of a rectangular Cartesian coordinate system. Also, -




let P(xy) be any point on that angle. The variable = is measured
along the horizontal axis, and y is measured along the vertical axis. Then f-;;.-:
the function tan(x) is defined as y/x . From this, it can be shown

that for any angle within the interval [n/4, /2], equation 25 holds

true. !v‘_:
Therefore, by setting « to 7t/2 - « and returning the reciprocal of _.
tan(x), the angle « can effectively be reduced to lie within the interval E_L
(0, /4] . .s
tan («) = 1/tan (/2 - «) (25) o

b

Asin and Acos. The equation B = sin(a) determines an infinite [

number of real values for B within the interval [-1, 1]. Therefore, the
inverse, « = sin”'() , has many possible solutions. However, for sin™'(p) :
to be a true function, there there is the restriction of one « for every L
value B . For this reason, it is necessary to pick a range of principal o
values that will satisfy this restriction. Figure S depicts the range of _‘
principle values defined for this function, and is the interval [-71t/2, nt/2]. L

Careful examination of Figure S reveals a relationship that can be S5
used to reduce the amount of storage space required by the routines that
compute the values of these functions. The relationship is expressed in L—~
(26). From the range of values defined for sin"'(«) (see Figure S), and
the relationship defined in (26); the the range of values over which
cos”'(«) is defined includes [0, Tl. By adjusting the results that are r“*

computed in '~
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‘e . P
) a separate procedure, both Asin and Acos can serve as short linkages to ‘

that procedure.
cos” () = /2 - sin! (&) (26) e

By restricting the argument of the functions to the interval [0, .S},
the identity function shown in (27) can also be used. Note that by solving -
for sin'(«x) in equation (26) and substituting the result into the S

left-hand-side of (27) , we come up with the definition for cos™'(«)

shown in (28). r~
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sin”! (&) = /2 - 2 sin”' Y(1-)7 2 (27)

o
cos™! (&) = 2 sin! V(1-) /2 (28) ‘
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Atan. The equation B = tan(x) determines an infinite number of

real values for B within the interval (-1, 1] . Therefore, the inverse,

PN e
! Lttt

« = tan"'(B) , has many possible solutions. However for tan"'(B) to be
a true function, there can only be one o« for every value B . For this X
reason, it is necessary to pick a range of principal values that will L_.,
satisfy this restriction. Figure 6 depicts the range of principal values
defined for this function, and is the interval [-/4, /4] .

Examination of Figure 6 illustrates that tan™'(«) is antisymmetric e

about the point zero. That is, tan ! («) = - tan"'(-«) . By noting the sign
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change of the result, this property can be used to reduce an argument to
within the interval [0, o).
In 2 manner similar to the reduction method described in equation

(24) of the tangent subsection, the argument can be reduced to within the

interval [0,1] . The identity function depicted in (29) is valid for those
arguments greater than or equal to one. This same identity function can '
be used to reduce the argument to within the interval [0, /4] . This is 7
performed by subtracting from 7t/2 , the arctangent of the inverse for the

reduced argument.

Atan(x) = 71/2 - Atan(1/«) (29) L-e-

The final range reduction reduces the argument to within the interval L
[0, 2 - Y3 ] . This is done by making use of the identity functions shown -
in equations (30) and (31).

B=(ax¥3-1)/ (V3 +a) (30)

Atan(a) = 11/6 + Atan(p) (31)
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[11. Development and Design of the Functions

General Discussion

This chapter deals with the detailed design of each of the specific
functions. As was stated earlier, two type representations have been

designed and implemented. Therefore, each of the following sections

contain a discussion on the design of each function’s fixed-point and

floating-point implementation. w
Each design has an associated structured flowchart, and each box
within the flowchart has been numbered for ease of reference. ;,.:
Pseudo-operations are used throughout each of the flowcharts, and
includes those defined by Cody and Waite (4: 9-10). Furthermore, a few
de additional pseudo-operations have been introduced. (see Appendix A) E—;
Although the approximation methods used are those suggested by Cody ,\
and Waite, the actual design implementations are significantly different. ﬁ:
The designs proposed by Cody and Waite are guidelines for a broad class of L‘?
computer, and weren't specifically targeted towards a 1750A architecture. «
Therefore, the designs have been tailored somewhat. In addition, ....j
fixed-point algorithms were designed to be invoked with arguments L*
expressed in pi-radian measure. This metric was discussed in the 3
"Assumptions” section of chapter one. Lj
The coefficients for each of the functions were either taken from
Cody and Waite, or are modifications of those provided by Cody and Waite. .'
These modifications are discussed in their appropriate subsection. E,j
Y
s
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2in and Cos Implementation

ixed-Point. In Chapter two, it was noted that the identity function
for “Cos”, equation (19), could be used to design a procedure that will
compute the values for both the sine and cosine functions. indeed, if one
looks at Figure 3, this concept can be verified. For example: examine the
graph of cosine and note that Cos(-1) is equivalent to Sin(|-7|+m/2).
Therefore, by adjusting the cosine’s argument « , to its absolute value,
plus T/2 , one routine can be developed that will compute the values of
both functions.

JOVIAL, the high order language used to implement these functions,
doesn’t have the facility for supporting multipie entry points. As a result,
both "Sin" and “Cos” have been implemented as shown in figures 73, 7b, and
8. Both functions have their own unique entry points, but both call the
function "SinCos" to compute the desired results.

Note that steps 2, 3, and 4 of Figure 7a, represent the identity
function for *Cos*. The fixed-point algorithms use pi-radian measures
(pi-radians = radians/m); therefore, one half is used in lieu of 7/2.

Since an argument’s legal range of values for this fixed-point
implementation is {-1, 1] : these functions have been defined as having
one sign bit, one integer bit, and 30 fractional bits (-2<x<2). The JOVIAL
compiler will not let programmers invoke this routine with an
incompatible type : however, it is still possible for "Cos” to generate a
value outside the function’'s defined range. This could potentially cause

a problem on another machine, but not on a 1730A. Adding .5
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pi-radians to the arqument whose absolute value (through programmer
error) is already within the interval [1.5, 2), will cause an overflow.
However, the MIL-STD-1750A specifies that fixed-point overflows will
result in the most-significant-bits being lost, and the least significant
retained. This feature of the 1750A architecture is actually a benefit to
this design implementation. The cosine function has a period of 27

radians (2 in pi-radian measure), and since an overflow causes the result

to be a modulo of the period length, the final result is in its reduced form.
D As stated earlier, the legal range of values for these functions is
“ [-1. 1] . In addition to the aforementioned situation, it is possible that an

adjustment to the cosine argument would result in its being outside the

legal interval yet not overflow. No further reduction is performed:
however, as the same potential problem exists in programs that invoke the
“Sin” function. Therefore, any further reductions are handled in *SinCos”.

The variable “Sign* shown in step 8 of the "SinCos” function (Figure
8), is what is used to note the sign changes discussed on pages 26 and 27.
Since the initial step of this algorithm is to reduce the original argument
to within the interval [0, .S] . the approximating polynomial will alWags
compute a positive result. Therefore, during each phase of the domain
reduction process, it is necessary to keep track of those arguments whose
functional values are, in reality, antisymmetric with the computed result.
The value returned to the calling procedure will be the result of the
polynomial approximation multiplied by the value of “Sign® (£1).

The variable "X" is the argument passed to the "SinCos” function.

Since domain reduction on the argument is réquired. and since JOVIAL

..................................
.........
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25_:_23‘ treats formal parameters as read only, the value of “X" is assigned to “F".
I The variable " F* is used throughout the domain reduction phase. (step 8) y
, The first step of the domain reduction process is to restrict "F* to ,
within the interval (0, 2) . If “F* is negative, it is antisymmetric with
' respect to, its corresponding positive value. Examine Figure 3a and note
that  sin{«) equals -sin(-«) ; therefore, the sign change is noted
' (Sign = - Sign) ., and “F* is set to its absolute value. The built-in
: function for absolute value was found to give inconsistent results, so the
absolute value is found by: F = -F. (steps 9 and 10 of Figure 8)
b The second step of the domain reduction phase is to reduce the E.;
argument to within the interval [0,1] . Examine Figure 3a, and note that 1

the interval [1, 2] (in pi-radians) is antisymmetric, with respect to, the

interval [0,1] . Again, the sign difference must be noted (Sign = -Sign),

and the argument reduced to: F=1-F. (steps 11 and 12 of Figure 8)

The final phase of the domain reduction step, places the argument,

“F*, within the interval [0, .5] . This reduction is accomplished by

exploiting the sine function’s property of symmetry. Examine Figure 3a }
again, and note that the interval [0,1] is symmetric about the point j
i one-half. That is, sin(0) = sin(1), sin(.2) = sin(.8) , . . ., etc.. Stated E..f

another way, if "F" is greater than .5 ; then sin(F) can be computed using
sin(1-F) . Therefore, “F* is reduced by setting F tol-F. (steps 13 and

F 14 of Figure 8) !._l
The next step of the algorithm is to compute the result of a 1
i polynomial approximation for  sin(F) . This polynomial is @ "Chebyshev r’4
E Economization” of the Maclaurin series for sine. However, if the reduced ‘*‘:

argument is so small that its use within the approximation would cause an

.................................................................................
..................................
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underflow (i.e. "F" is less than some epsilon "eps”), the approximation is
set to T*F . In systems using a radian measure -- sin(F) approaches "F*
as "F" approaches zero. Therefore, in systems using pi-radian measure --

sin(F) approaches F*mi as "F* approaches zero. The lower limit is set

to the value that prevents the computation ri‘F3 from underflowing

(r1 is a coefficient from the approximating polynomial). As with an

overflow condition, the 1750A handles underflows without interrupting
software processing, but sets the result to zero. Underflow may not
Create a problem, but the check for underfiow may eliminate the overhead
associated with computing the polynomial approximation. (steps 15 and
18 of Figure 8)

The coefficients used in this algorithm are modifications of those
presented by Cody and waite (4: 132). The approximation described by Cody
and waite is similar to the form shown jn (32). The “r" values represent
the coefficients of the approximation, and 718 represents the angle being
approximated. These modifications were necessary because the algorithms
of Cody and Waite use arguments expressed in radian measure (i.e. 78),

rather than pi-radians as in this implementation.

P(7(8) = rg(8! + £, (718)° + ry(118)7 + r,(718)° +

£y (78)3 + (778) (32)
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By restructuring (32) into the form of that shown in (33), the new
coefficients can be easily computed. From (32), (33), and the definition

for pi-radians; it can be shown that the new coefficients, r' ,can

be computed by r, =77 . Where "y", is the power of the angle

expressed by the radian metric —- r ()Y in (34).

P(re) = ' ¢S50 + 19r408%+ 17387+ m3r26% +
n3r1 83+ 78 (33)

A cursory examination of this method of approximation shows, that it
would be very inefficient if the algorithm were coded exactly as shown
(32 or 33). This problem is eliminated by making use of "Horner's Rule”. If
“G" is set to the value “F2* , the polynomial can be computed as shown in
(34) and (35). (steps 16 and 17 of Figure 8)

result = ((((((r5 G+r)G+ rs) G+rp))G+r)G (34)
result = result 7T + T (39)

This last method of approximation requires eight multiplications and
five additions; as compared to the five multiplications, five additions, and
five powers shown in (32). The significant difference in the number of
arithmetic operations, will also prevent the loss of precision that

accompanies the computation of the individual powers of "F”. 1
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Table 3 Coefficients for Polynomial approximation to Sin
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The coefficients for this method of approximation were determined

from the relationship, r', - *n" , and the powers of 7t implicit to (34).
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The new values were computed using the coefficients given by Cody and ;_'-_‘lff]
waite, the value of pi in (36), and a machine of higher precision than that -

of the 1750A. The new coefficients are shown in Table 3.

pi = 3.14159_26535_90 (36)

Eloating-Point. The method used in approximating the floating-point
sine and cosine functions, is very similar to that just described. So, there
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will be references to the discussions of the preceding subsection. The

major difference between the previous algorithm and this one is, that this
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SinCosf .

Figure 8 a) Sinf; b) Cosf Structured Flowchart

Even though these algorithms accept arguments of radian measure,
they are still quite different from the algorithms described by Cody and

Waite. Their algorithm  converts the argument to pi-radians,
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- makes some adjustments, and then converts the argument back into

radians. This takes time, unnecessarily introduces the possibility of

_ L overflow conditions, and forces the algorithm to eliminate errors
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generated through the use of guard digits within the architecture. L

Therefore, since the argument has to be converted to pi-radians anyway, the
new design leaves it in that unit of measure throughout the procedure.
As was discussed in the previous subsection, JOVIAL cannot support L_

multiple entry points, and as a consequence, both “sinf” and "Cosf” are

little more than linkages to the routine "SinCosf" (see Figure 9).
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Note the naming convention used for these functions. They are
distinguished from their fixed-point counterparts by the ietter "f" at the
end of their name. This convention is used for all functions implemented
as a result of this thesis, and will not be elaborated elsewhere.

Prior to invoking the function “SinCosf”, both "Sinf" and "Cosf” must
perform a limit check on their passed argument. This step is necessary to
insure a good approximation for large arguments. Due to the way floating-
point values are stored, least significant bits are lost as numbers become
larger. It is possible for a number to be so large, that it is no longer
representable as a reasonable multiple of pi. Therefore, the maximum
limit used in these aigorithms is similar to that recommended by Cody
and Waite (4: 134). The maximum size an argument can take is, the
integer value *242  (where “t* is the number of non-sign bits of the
floating-point coefficient). If the argument is greater than the maximum
limit, each of the respective functions will return a value of zero. This is
an area in need of further analysis, and should lead to an acceptable
method for handling exceptions within this avionics weapon systems.
(steps 1 and 2 of figures 9a and 9b)

Before "Cosf” can invoke the function "Sincosf”, it must make use of
the identity function described in equation (19). Since the floating-point
argument is still in radian measure at this point, /2 is added to the
absolute value of the variable "Y". (steps 3 - 5)

The first step of the "SinCaosf” function is to initialize the variables
that will be used during the domain reduction phases. The working variable
"F", will contain the eventual reduced argument. Dividing F" by n

initializes it to a multiple of pi-radians. In the actual implementation, F"
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\;1
is muitiplied by the constant in (37) rather than divided by 1 . This é::h
method is preferred, because multiplications are more efficient than L:
division in most architectures. (step 7 Figure 10a) 1:‘_,
1/11 = 0.31830_96861_838 (37) b
The variable °Y°, initialized in step 7, will be used to find the T
integer portion of “F". Since JOVIAL doesn’t include the built-in function I
"INT" for extracting the integer portion of a floating-point number, other E.:
features of the language are used to perform the equivalent action. This
method is discussed in Appendix A; however, at this point the variable
must be initialized to zero. L‘_j
As in the fixed-point algorithm described in the preceding subsection, ‘.;jT_ZE;f
it ic necessary to note any reduction process that has an affect on the Z
sign of the final result. Therefore, the “Sign™ flag must be initialized to E:.J
one. (step 8 Figure 10a)
The first phase of range reduction, is to reduce the argument to ‘
within the range of all positive multiples pi. If F" is negative, it is E—-
antisymmetric with its positive counterpart; therefore, after setting F° ‘
to its absolute value, the sign change must be noted (Sign = -Sign). (steps S
9-10 Figure 102) b
The next domain reduction phase reduces the argument to within the 4
interval [0, 1] , and is represented by steps 11 through 14 of the r“
"SinCos” flowchart. If the argument "F", is greater than or equal to one, it :-_;;1;:
has an integer portion defined within it. If the integer portion of "F" is
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Figure 11 Bit Layout of 1750A Floating-Point Number

odd, then the argument lies in an interval that is antisymmetric, with
respect to, those arguments that lie within the interval [0, 1] . If it is
antisymmetric, the sign difference must be noted before proceeding.

The description of the ODD function (step 12 Figure 10a) in Appendix
A makes it sound as though the process is rather involved. To the
contrary, it is very simple and fast as compared to the method described
by Cody and waite. This function can be implemented by using JOVIAL
specified tables that take advantage of the floating-point bit pattern
shown in Figure 11,

In a manner similar to that described for the ODD function, the "INT”
function can be simulated. If the exponent points to the least significant
bit of a floating-point number’s integer field, then bits zero through the
least significant bit, contain the actual integer. The integer bits of the
argument "F" are copied into the equivalent bit positions of the variable
"Y* , and then the exponent field of “Y" is set to the value of the
exponent field contained in "F". Subtracting "Y" from "F" will reduce the

argument “F" to within the interval [(Q,1]. (steps 14 and 15, Figure 10a)
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Table 4 Coeffizients for Polynomial spprozimation to Sinf

The last step of the range reduction phase is to place the argument to
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within the interval [0, .51 . This step is identical to that described in
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the fixed-point algorithm, and involves comparing “F* to one-half. If “F* is
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greater than one-half the "F" is set to: 1 - F. (step 17, Figure 10b)

The next two steps of the algorithm are: to approximate the function
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sin(F); and then adjust it by multiplying it by “F* and “Sign“. These steps

are identical to those described in the previous subsection, and need not
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they were derived in the same manner as described before. These values

are displayed in Table 4.
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Figure 12 a) Tan; b) Cot Structured Flowchart

de

Tan and Cot Implementation

Eixed-Point. in chapter two, the identity function for "Tan" and "Cot”,
equation (23), established that a procedure could compute approximations
for both the tangent and cotangent functions. A cursory examination of
Figure 28 will verify this. Therefore, by noting which function is
invoked, a single procedure can be called to do both computations.

Since JOVIAL doesn't have the facility for supporting muiltiple
_ entry-points, these functions have been implemented as shown in figures
, . 12a, 12b, and 13. Both "Tan" and "Cot" have their own unique entry-points,
Do but both call “TanCot" to compute the desired resuits.
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Note that the "Cot” function does not implement the identity function,
as do the "Cos" or "Cosf" functions. The approximation method used, is the
“Remes” algo: ithm discussed in the preceding chapter. Since this method is
a rational approximation that uses a polynomial evaluation for the
numerator, and another for the denominator; the identity function can be
implemented within “TanCot” . "TanCot" must choose which polynomial
evaluations are to be used as the numerator, and as the denominator. This
decision is based on the value of “Job”, a flag passed to it by "Tan" and
"Cot". (step 2, figures 12 and 12b) which function has been invoked, one
routine can be developed that will compute the values of both functions.

Step S, of Figure 13, is not a computer operation. However, it is an
efficient means of implementing the “Tan" and "Cot" identity function, and
one of the range reduction phases. The rational approximation is of the form
shown in equation (10); where the polynomial used in the numerator is
represented by Pg , and the polynomial used in the denominator is
represented by Qg. Each polynomial’s evaluation is contained in a table
called "Poly”: Pg is inentry zero, and Qg is contained in entry one.
The "alias” pseudo-operation, is equivalent to a JOVIAL "Define” . It is a
note to the compiler, that there are two methods of referring to each
table entry. The reason for this may not be intuitively obvious at this
point, but will become clear later.

As in every function discussed previously, it is necessary to note any
domain reduction processes that have an impact on the sign of the final
result. Since the final domain reduction phase of this algorithm reduces an
argument to within the pi-radian interval [0, .25] , computed results

are always positive. Therefore, the “Sign” flag is initialized to indicate a

............................
..............
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positive result. If, at any point during the domain reduction step, it is

I
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determined that the true functional value is antisymmetric with what is

[
b

>
E
¥
3
N
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currently indicated, the flag is negated (i.e. Sign = -Sign). (step S, Figure
13)

Steps 6, 7, and 8 of the TanCot flowchart, are where the initial
numerator and denominator are determined. If *TanCot” was called by “Cot”

the “Num* flag (indicates which table entry of “Poly" is the numerator) is

set to one, and its counterpart, “Den” is set to zero. This is where the use

of an alias may start making sense. Even though this function could have

R ¥ v W v vy
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et et P
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D been coded without using aliases; it is more convenient, and more
readable, if the design doesn't have to be concerned with “which" entry

contains “what” polynomial evaluation. All that is necessary, is to keep

track of how each will be used: either as a numerator or as a denominator.

& o AULNEURS
S P e
’ TR T
o SO

v

This is how the identity function has been implemented. In the event that

fon o)

“TanCot” is called by “Tan®, “Num* and "Den” are set to zero and one,
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respectively.

The next step of this algorithm is domain reduction, and the first

phase of this step is to limit the argument to all positive values of

_'
P

pi-radians. If the argument "X" is negative, it is antisymmetric with its
positive counterpart. The variable "X" is set to its absolute value, and the

sign dichotomy is noted (Sign = -Sign). (steps 9 and 10, 13)

et
[ A A
2 3 PR Y Y ey

As was the case for “Sin” and "Cos”, "Tan" and “Cot” accept arguments

expressed in pi-radian measure. The legal range of values accepted by
these routines is (-1, 1] , and their argument’s fixed-point attributes are

the same as those defined in the "Sin” and "Cos” functions. Consequently,
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MIL-STD-17S0A architectures will allow the value of arguments to lie
within the the interval (-2, 2). After the aforementioned domain reduction
phase, arguments will be limited to the interval [0, 2) . Since the
architecture will allow arguments outside the function's defined interval,
it is necessary to consider those exceptions during domain reduction.
Examine Figure 4a, and note that the period of tangent is one pi-radian.
The expression, Tan(X) = Tan(X-1) , is a true equality, and illustrates
that function calls with an argument in the interval (1,2) , can still be
approximated if their argument is reduced by one. (steps 11 and 12,
Figure 13)

The next domain reduction phase will reduce the argument to within
the interval [0, .5] . Examine Figure 4a, and note that those arguments
falling in the interval [.5, 1] are antisymmetric, with respect to, those
lying in the interval [0, .S5] . That is, if X>.5, then Tan(X)=-Tanr(1-X).
As an example, assume that X = .75 . Examine Figure 4a, and note that
Tan(.75)=-1 . Also note that, Tan(1-.75) = Tar(.25) = 1 = -Tan(.75)
This example illustrates that, the argument can be reduced if the sign
change is noted, and the argument set to: X = 1-X . (steps 13 and 14)

The final phase of domain reduction, reduces the argument to within
the interval [0, .25] . Again, examine Figure 4a. Note that all arguments
lying in the interval (.25, .5], are inversely related to those arguments in
the interval [0, .25] . That is, if X>.25 , then Tan(X) = 1/Tan(.5-X) .
Further argument reduction is accomplished by swapping the values of the

“Poly” subscripts, “Num® and "Den®, and setting the variable *X* to
X=.5-X. (steps 15 and 16, Figure 13)
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As stated earlier, fixed-point underflow and overflow will not create
a problem for software packages running on a 17S50A architecture.
However, if the argument is not examined for such conditions, there will
be an unnecessary amount of overhead incurred while obtaining an
approximation to these functions. Step 17 of the *TanCot” flowchart is
intended to eliminate the unwarranted overhead. If the argument, *X*, is
less than some epsilon, the approximation is found by setting the
polynomial *Pg" to X*mi , and the polynomial “Qg" to one. Otherwise,
each polynomial must be evaluated separately. The epsilon used during
implementation, is the inverse of MAX/7 ; where "MAX” is the maximum
representable value allowed by the attributes of the returned function. The
attributes of the returned function are: one signed bit, 12 integer bits, and
18 fractional bits (steps 17 and 18, Figure 13)

The process of evaluating the two polynomials, “Pg* and "Qg*, is
similar to that of P(x), in the “Sin* and “Cos” implementation. Each
polynomial was derived through the use of the “Second Algorithm of
Remes”, and each are of the form shown in (38) and (39), respectively.
Coding the evaluations in the manner implied by (38) and (39), is very
inefficient. This inefficiency, is eliminated through the use of "Horner's”

rule.

Pg = P,(118)° + P,(78) + P(8) (38)

Qg = Q,(18)* + Q,(78)? + Q, (39)

.
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Table 5§ Cosfficients for Polynomial approximation to Tan b

Application of "Horner’s” rule, will leave the polynomials in the form i

shown in equations (40) and (41) .

.

yrowy Tt s
. N e
[
[

Pg= ([P, (m8)? + P,] (m8)2 + P} (7t6) (40) “T

Qg= [Q,(m8)2 + Q,] (718)2 + Q, (41) [

R,
These equations use the radian metric, 18 . The subscripted values of -i::~1'ﬁ‘

"P* and "Q", represent the coefficients determined by Cody and Waite -
(4: 162). 1f (40) and (41) are restructured as in (42) and (43); the angle, PR

8 ., 1s 3 pi-radian metric. The radian coefficients, multiplied by their '-;-_.Qa

-----------------------------------------------------------------
..................




associated power of pi, determine new pi-radian coefficients. The new
coefficients are given in Table 5. (step19, Figure 13)

Pg= ([(P,m*82 + P 7% 7182 + P, m} 8 (40)

[i Qg= [(@,m%e? + Q282+ Q, (41)

The evaluation of Tan(X) is the final step of this algorithm. The

- AT NEASA
L ] ot

result of “Pg* is stored in “Poly(0)", and the result of “Qg" is stored in
"Poly(1)" . The evaluation to be used as the numerator, as well as the one
to be used as the denominator, is determined by the values in "Num” and

e Y
/I A
%, L e
IS LS R

"Den*. The value returned is the resuit of the polynomial division,
multiplied by “Sign” . (step 20, Figure 13)

Eloating-Point. In chapter two, it was noted that the identity function
for "Tan" and "Cot", equation (23), could be used to design a procedure that
will compute the values for both the tangent and cotangent functions. A
cursory examination of Figure 28 will verify this. Therefore, by

noting which function has been invoked, one routine can be developed that -f_':‘}’_'-_

will compute the vaiues of both functions. T
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Figure 14 a) Tanf; b) Cotf Structured Flowchart

(a)  {Tant ) (bl Cotf
'k‘ 1.4 5 10
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Jobe 0 Jafb~ 1
- b
Y TanfeTanCotf Cotf<TanCotf
f 3 3
f
! — /_,_'!!__\
. (Return) (Return)
’
3
3
3
s

Both "Tanf" and “Cotf" are logically identical to "Tan" and "Cot". (see
figures 12 and 14) The only difference between the two type
implementations, is that the floating-point algorithms are invoked with
arguments expressed in radian measure.

Step 5 of "TanCotf" is similar to step S5 of Figure 13. The only
difference is that the argument, "X", is divided by 1/2 . As mentioned
earlier, multiplications are typically more efficient than divisions; so the
division is implemented as the product of the argument and the constant in
(42).

m/2= 1370796326795 (42)
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Floating-FPmnt Multiply Exponent Adjustment. e

DPERATION  EXECUTION TIME OPERATION  EXECUTION TIME o

in ) zec iy zec L:*

o

EFL 400 LR 0.56 iy

EM 8.26 LB 1.57 ;i;-;::

EFST 410 SLL 0g1* E.-.ia.

SRA 0.81* Sy

AR 0.55 2

STLB 230 o

- - '.")7

Totals 17.061 sec 6.60 U sec ol

* Times not determined , worst case times from similar aperations used. I

Table & Execution Times Tor 17S0A Instructions From
Sperry 1621 Programmer Reference Manual

.

o7

Steps 6 through 9, of Figure 15, are identical to the same numbered
steps in Figure 13. The logic, for both cases, is identical, and won't be
expanded any further. .

The division performed in step S of this algorithm, expresses the
argument “X" as a multiple of 1/2 . Examine Figure 4a and note that every

other muitiple of m/2, is the negative inverse of the interval [0, n1/2)

Therefore, if X21 and its integer portion is odd; the sign dichotomy is noted,

and the table subscripts for "Poly" are swapped. The subscript swap,

changes which polynomiais will be used as the numerator and denominator i
¥ of this rational approximation. (step 11 and 12, Figure 15) L._
r Step 13 of this algorithm, is used to express the argument in pi-radian
i measure (i.e. X * 2/m * 1/2 = X/1 = pi-radians). Rather than dividing by ~
b o two or multiplying by one-half, a faster and more accurate method is used. f—j
. The layout of a 1750A floating-point number was presented in the “SinCosf"
v o
3 3 B
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Table 7 Cosfficients for Polynomial approdimation to Tanf
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section. This knowledge can be used to make multiplications, involving

|

powers-of-two, more efficient. Remember, the exponent field of a

'3

floating-point number is expressed as a power-of-two; therefore, a division

a
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anla?

by two can be accomplished by subtracting 1 from the exponent field. The
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subtraction can be made through the use of JOVIAL specified tables,
containing a signed integer field that overlays the exponent of "X".
Table 6 compares the execution times of the "Exponent Adjustment”

R
DT A
NPV X

-

method just described, against floating-point muitipiies. It's interesting to
note, that the implemented method is almost three times faster than a

A

straight multiply.
The logic for the rest of the design is identical to the last six steps of
of the fixed-point algorithm, and needs no further explanation. Two

implementation exceptions are: the values of epsilon, and the coefficients

[’“ used in the approximations. Epsiion is set to a value; such that Pg/Qg, and
[ its inverse, will not cause an overflow, or an underflow. The coefficients, q‘
2 62 :
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for this approximation, were found in the same manner as described in the
"TanCot” subsection, and are summarized in Table 7.

ASin and ACos Implementation

Up to this point, all discussions of the detailed design section have
been divided into two subsections; one concerned with fixed-point
implementation, and a second concerned with floating-point
implementation. The last two sections of this chapter discuss the inverse
trigonometric functions, and their implementation. The fixed-point and
floating-point implementations have arguments that are in the same
metric, and ;therefore, do not differ significantly in their design. With but
two exceptions, the only difference between the two type “"ASin" and
"ACos” functions are the coefficients used in their approximations. For
that reason, there is only one design discussion. The lone exceptions will
be noted later.

The identity function that relates "ACos” to "ASin" is shown in
equation (26), and is expanded upon in (27) and (28) . These equations
illustrate the point that one procedure can be written to compute the
approximations of both functions. The routine “ASinCos” , will return the
appropriate value, depending on which function invoked it. As mentioned

several times prior to this, JOVIAL does not support multiple

.......
.....................................................
.......................

..........
---------
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Figure 16 ASin and ACos Structured Flowechart

entry-points, and forces the two functions to be implemented as shown in
de figures 16 and 17.

Each function invokes the procedure “ASinCos” by passing the

argument, and a flag indicating which function is making the call.

The function approximation of “ASinCos” is performed in three steps: L_.
reduction of the argument “Y" to within the interval [0, .S] : the 1
evaluation of  sin'(Y) : and reconstruction of sin'(Y) to the j
representation of the calling function sin'(X) . L

The first step of argument reduction is performed by step 3 in the
flowchart of Figure 17. The sign change is not noted, because the final
reduction is not a multiple of 1. L._‘

The computation of sin'(Y) is sensitive to error for large J
arguments, especially for those that are close to 1. Therefore, careful F4
argument reduction is required to limit this problem. Steps S through 8 T
are designed to do just that, and the reader is encouraged to reference S‘

S
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Cody and Waite (4: 174) for a detailed discussion on the benefits of this
design consideration.

If the argument, reduced by step 3, is greater than .5 ,then a table
index is set to: one minus the value of *Job”“. That is , if *ASinCos” was
invoked by "ACos”®, the table index is given the value “0°, and if called by
“ASin® it is given the value 1" . The index value is used to indicate which
path was taken from step 4.

If the right path of the flowchart was taken, then the next step is
insure that a legal argument was passed by a user. If the argument is
greater-than one it is an undefined argument. The current design sets the
return value to the maximum representable value of the implemented
function type. However, this is an area requiring further analysis, and
should provide a better means of handling such exceptions.

Step 8 reduces the argument, such that step 13 will compute the
arcsine of the compliment angle. Examine Figure S in chapter 2. If the
resuits of step 13 are plotted for those arguments lying in the interval
(.5, 1] (as aresult of taking the right path of the flowchart): they would
form a curve that is the the *mirror* of the arccosine curve (i.e. for the
portion of the arccosine curve in the interval [.5, 1], rotate it 90 degrees
about the horizontal axis). This information will prove useful in
understanding how sin"'(X) is reconstructed from sin™'(Y).

If, in step 4, the argument is less-than-or-equal-to .5 ; the left
path of the flowchart is taken. If the the argument is less than a
predefined epsilon, then “Result” is set to “Y* . This is one of two steps

that differ for the two implementations. The fixed-point implementation

.............................
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Tabie 3 ASin/aCos Fixed and Floating-Point Coefficients

converts "Result” to pi-radian measure by dividing by pi. If the argument
is greater-than the epsilon, then “G" is set to Y2 . (steps 10-12, F igure
17)

Step 13 computes the rational approximation of arcsine, and is
implemented in a manner identical to that described in the “Tan and
Cot” section of this chapter. This is the only other step that differs in the
two algorithms. The fixed-point implementation is expressed in pi-radian
measure by dividing “R(g)* by pi. The coefficients of each polynomial used
in the two type implementations are shown in Table 8.

The last step of the algorithm is necessary to reconstruct sin™'(X)

from the result, sin”'(Y), generated by step 13. The two tables "A” and ﬁ—*
"B" are used in this process, and require the knowledge of which function ”’
;:'-'\1




............................................

invoked the “ASinCos” function, as well as, which path was taken during
the argument reduction step.

Examine Figure S, and also note the relationships expressed in (26),
(27), and (28) . Earlier, it was mentioned that, if the right path of the
flowchart is taken for argument reduction (i.e. the argument “Y” is in the
interval [.5, 1] ): the arcsine forming the compliiment angle is computed.
A curve of the possibte results would "mirror” the arccosine curve shown
in'Figure S . If the function “ACos” is the invoking routine, and the original
argument is positive, then the result lying on the mirrored curve is
negative, with respect to, the arccosine curve shown in Figure 5 .
Therefore, the results from step 13, are subtracted from zero. (steps 14,
15, and 17: Figure 17) If the original argument is negative, the results on
the “mirrored” curve are 7t less than the arccosine curve, and requires that
pi (1 in pi-radian measure) be added to reconstruct the true function.
(steps 14-16, Figure 17)

If arccosine is being approximated, and the left path of argument
reduction is taken (i.e. the argument "Y* is in the interval [0, .5] ), the
results of step 13 represent the arcsine curve shown in Figure S . If the
origihal argument is positive, then arcsine curve is reconstructed into an
arccosine curve by subtracting the results of step 13 from /2 . (steps
14, 15, and 17; Figure 17) If the original argument was negative, the sine
curve in the interval (0, .51, is m/2 (.5 in pi-radian measure) less
than that represented by the arccosine curve shown in the interval
[-.5, 0}; therefore, the arccosine is constructed from the results of step
13, by adding 7/2 . (steps 14-16, Figure 17)
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If the arcsine function is being approximated, and the right path of
argument reduction was taken (i.e. “Y* lies in the interval [.5, 1] ) the
results of step 13 are represented by the “mirrored” curve. This curve is
/2 (.5 in pi-radian measure) less than the function being approximated,
and requires that 71t/2 be added to reconstruct it to the true function. If
the left path was taken, the resuits of step 13 are already represented by
the arcsine curve. If the original argument was negative, then the results
of step 18 are antisymmetric, with respect to, the true value of the

function, and are complimented.
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IV Vvalidation Verification and Performance Evaluation

General Discussion

This chapter is concerned with describing the methodology used for
determining the correctness and performance qualities of the implemented
functions. Due to problems in the availability of hardware and the
associated support software, the testing and performance evaluations are
somewhat limited. Hardware became available towards the middie of the
thesis effort, but software tools used for development were incompatible
with those required by the available 1750A. The loader used by the
available 1750A equipment, expects files of a different format than what
is created by the software development tools. Rather than developing a
new loader, a routine was written that converts load modules into a
format required by the 1750A loader. The reformatting procedure is listed
in Appendix C.

Another problem that had to be overcome before testing and
evaluation could be considered, was the availability of input/output (1/0)
routines. Without 1/0 routines, further considerations for testing would be

fruitless. No 1/0 packages were available, and as a consequence, had to be

created. This delayed testing efforts considerably, as an 1/0 routine had
to be developed with the use of the MIL-STD-1750A standard ISA, rather <l
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than with a high-order language. The /O package developed is listed in
Appendix B, and is only capable of writing to a user console.
Performance analysis requires the comparison of 1730A results, with

those generated on a machine of higher precision. Unfortunately, this

requirement made the newly created [/0 routine insufficient for this task. ‘v-;
An available console driver has a routine that writes user specified areas ﬁ,
of 1750A memory to magnetic disk. By storing a function’s results in a _1
specified area of 1750A memory, the test results can then be dumped to E’“
disk for an eventual upload to a VAX 11/780A. The results are then ‘:
available for input to the different software test packages. However, the »g
record format of the 1750A memory dump is not in a friendly format, and im
must be converted to a readable form. At the time of this writing, a '. :
routine for making the disk file readable is not completely debugged. f:.
However, it is at a point where it couid be completed by another
programmer. \
The aforementioned problems have limited the amount of time E__
available for designing extensive test procedures. Therefore, validation, :
verification, and performance analysis is confined to: manual static
analysis methods, critical value testing, and measurement of each L,,
algorithms generated error. ‘-ff;;_-

............................................................
...........................
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N Manual Static Analysis Methods

RN » LSANASS

To most people, manual static analysis is called "desk checking” .

T

Static analysis involves the search for any inconsistencies between design
tools (i.e. flowcharts), design details (chapter 3), program headers, and
program comments. This method is useful for finding errors caused by the
translation of design into code, as well as 'possible design errors. An
inconsistency may indicate potential problems. This methodology was

used, and all inconsistencies that were found were resolved.

Critical value testing is an attempt to "break” the software, and
requires the selection of specific arguments that could possibly cause
problems. A knowledge of each of the algorithms is required to select

proper arquments. Individual test cases are not listed here, but the reader

may find specific information by examining the test procedures listed in
Appendix B.
It is possible to generalize the tests performed without listing the

specific test cases. Potential test arguments are those whose

?
¥

O ¢

intermediate results could generate an overflow or underflow, or are

arguments lying in the fringe of computational abnormality. These
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arguments will help detect problem areas, and will give an indication as
to how robust each function is.

In addition; arguments that test each path of the algorithm have been
selected. Path testing is limited to insuring that every path of an
algorithm is tested, and does not imply that every possible path

combination is taken.

Performance Evaluation

As was mentioned in the introduction of this chapter, screen output
to the user console and hard copies of computed results are insufficient
for performance evaluation. Their use would imply a visual comparison of
generated results against published tables. Such a technique limits the
number of comparisons that could be made, and would cause doubt as to
the credibility of the comparisons. At best, it would provide a good
feeling for the quality of each function's performance. Therefore, it is
better to automate the process completely, and compare the generated
results against another machine generated standard.

The performance evaluation of the functions involves the computation
of two important statistics: the maximum relative error (MRE), and the
root-mean-square relative error (RE). Their values are determined through

the use of (43) and (44), where F(x) is the test result and f(x) is the
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comparison value generated by the same extended-precision function call
written for the VAX 11/780.

MRE - msx | FiXid+ f(Xi) s
Ytk
ST 0 ZFx ) () N2
e v El T ) (44)

-

P Y i LY
4 "-._. f‘- X] ,l

This method of error checking is an automatic tabular comparison,
where the VAX routines serve as the accepted standard. The test routine
tests densely packed samples of evenly spaced arguments spread
throughout [-3m, 31}] for floating-point algorithms, and [-1, 1] for
fixed-point algorithms. When regenerating arquments within the test
modules, it is important not to introduce unnecessary errors. This means
that arguments in the VAX should have its lower order bits padded with
zeros. The most-significant bits must be equivalent to the number of bits
in the 1750A argument, and no extra precision should be introduced.

The method of argument generation just described is recommended by
Cody (12: 762), and is the method used at the NASA Lewis Research

Center. This method is preferred to a random-number test because it

L measures the relative error throughout an entire interval. Using densely
‘ packed arguments also gives valuable insight to problems of different

argument ranges. [f the evenly spaced interval is set to a power of two
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L (representable on both machines), and is not less than the
least-significant bit of the 1750A argument, then an initial argument can
be chosen, such that, zero padding will only have to be performed once.
For example, if an initial floating-point argument is -3.1415 and the

chosen interval is 272, the second argument will be -3.1415 + 272,

Additional padding is not necessary, because “carries” are cascaded
forward and do not increase the number of most-significant bits in the
next argument. Arguments used in the function calls on both machines L' |
must be the same, and must be generated in the same order. ‘

Extra care is needed while reading the 1750A results from disk. Each

of the 1750A results are stored in an unformatted file, and must be read

into a binary record. This record is moved, bit-by-bit, to a variable of the

de appropriate type (VAX 11/780 fixed-point or floating-point). The _ﬂ:
bit-by-bit manipulation is accomplished through the use of JOVIAL
specified tables, and prevents conversion errors associated with
formatted input. L_f'

Before a comparison of the two results (one from the 1750A, and the
other from the VAX) can be made, the results generated within the test ‘
- module must be reduced to the same precision (same number of Lj
most-significant bits) as those from the 1750A. The precision reduction 5::;;
gives a rounded result that can be used to determine the MRE and RE, and i
will give a meaningful interpretation to the inherited error of the 1750A L—-'
functions. 1
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Vv Conclusions and Recommendations

The purpose of this thesis was to develop and to do performance
evaluation on a run-time math library developed specifically for
MIL-STD-1750A architectures. The library consists of the floating-point
implementation of several algebraic functions. Performance evaluation
was the major effort of this thesis, but not in the manner intended.

Function approximations are accomplished through the use of either

Chebyshef or rational approximations. The two different approximation
methods were discussed in chapter two, and are useful in understanding
- certain design considerations. The values of each polynomial’s
- coefficients were derived by (or were modifications of those derived by)
Cody and Waite. (4: 17-84) However, the implementation designs are
i‘ significantly different from those suggested by Cody and Waite. The
primary difference between the implemented designs and those suggested

by Cody and Wwaite, are the methods of argument reduction required of each

function.

Performance evaluation turned out to be the major effort, but not

because of extensive or elaborate testing of the library functions. Most of

the effort involved overcoming the following problems:




1.) There were several compiler bugs in the original 175S0A compiler
used.  Assembly listings had to be reviewed, in order to verify each
compilation of the source code.

2.) The use of a simulator for performance evaluation was ruled out
because of the limited number instructions that could be simulated, its
inabitity to simulate the use of floating-point data, and the relative speed
at which results were calculated. The simulator also lacked a facility for
writing results to mass storage. Storage of results on an external device
is necessary for input to software test packages.

3.) A new compiler and linker was introduced near the midpoint of the
thesis effort, and required a iong learning curve in order to use them.

4.) Once a 1750A machine became available, it was determined that
all its support software was intended for use with files created by the
old compiler and linker.

S.) Rather than use a compiler and linker that had several deficiencies,
or write a new loader routine, it was decided to write a support tool that
would convert load modules into a format expected by the available loader.

6.) The reformatting program required the use of JOVIAL and its
specified table features. It also required the use of FORTRAN routines to
perform the 1/0 of source and target files. The FORTRAN and JOVIAL
interfaces did not operate as expected, and the use of COMMON/COMPOOL
areas wouldn't work. This required parameter passing between the

routines, and the documentation for this type of interface was very

inadequate; however, the problems were eventually resolved.
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7.) The reformatting tool was written for use on a VAX 11/780. It
b was assumed that the JOVIAL compiler was free of bugs for a VAX target.

However, when the reformat routine was being debugged, it was

S discovered that JOVIAL table names could be overlayed, but corresponding
table items weren't overlayed with them. This problem took a long time
to discover, and an additional amount of time to design around.

8.) 1/0 routines have not been written for the 1750A, and had to be
developed. These routines are only capable of writing to a console screen.

9.) Screen output is insufficient for generating the thousands of
results that would be needed during testing and evaluation, so another
means of capturing the data had to be developed. Due to the lack of time
and inexperience in the internal 1/0 communications techniques of the

'Y 1750A hardware, development of a disk 1/0 routine was not a feasible
alternative. It was determined that results could be stored in specific
locations of memory, and then an available console routine could be used
to write the information to disk. An additional problem was encountered
when it was discovered that the record format of the disk files is not in a
VAX friendly format, and another routine had to be written to unpack the
stored results.

These problems limited the scope of this thesis effort to developing
the following:  designs; code that is free of syntax errors; the
development of command files for compiling, assembling, and linking
routines written for the 1750A; tools for formatting load modules that
are capable of being loaded into a Sperry 1631 implementation of the
MIL-STO-1750A; and tools that unpack test results stored on an RT/11
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formatted floppy disk. Generic test algorithms are provided, but are not

G
b4

written in a high-order-language. They provide the basic structure for L

VY - YEXALLA {0

-

critical range testing, and a means' of evaluating -and measuring each

L]
270

functions performance.

S R
-

Recommendations

The'products produced by this thesis effort are at point where design
of the intended performance evaluation can begin. All the groundwork has
been provided, and should be adequate for someone to continue the effort.
Many of the aforementioned problems have been resolved, and support tools

and command files are provided to shorten the learning curve that

follow-on programmers will have to experience.

&

The following recommendations should be considered if this effort is

, T Ty
AR,

continued.

1.) If the effort is limited to the use of JOVIAL, an analysis should be
made for determining how to handle exceptions detected at run time.
Exceptions include arguments outside legally defined limits.

2.) Since Ada has features for exception handling, all the library
functions should also be developed and implemented in Ada.

3.) Another point may be in favor or using Ada is that it also allows

the creation of generic packages and subprograms. The generic
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subprograms define a template, and generic parameters provide the
facility for tailoring the template to fit a particular need at transiation
time. In other words, one subprogram could provide caliculations for both
fixed-point or floating-point arguments, based on how it is used at
compile time. Because a generic package would not be able to take
advantage of the specific hardware functions unique to floating-point and
fixed point routines, this may result in a degradation of performance.

4.) Initially, it was discussed that all the math library routines should
be written in both JOVIAL and Ada with the intent that a comparative
evaluation could be done on the two languages. Unfortunately, an Ada
compiler targeted to the 1750A is not yet available. When a compiler
does become available, it is recommended that a new Ada math library be
developed and this comparative evaluation be performed.

S.) The compiler problems, mentioned above, should be corrected, and
1750A architectures and associated support software should be acquired

before more time is allocated to the effort.
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The following pseudo-operations were used in describing the

implementation designs of the different mathematic functions.

ADX(X.N): augments the integer exponent of a floating-point
representation of X by N. This scales the argument X by 2N.

For example,

ADX(1.0,2) = 4.0

FIX(X): returns the fixed-point representation of the
floating-point value X . This operation requires explicit

conversion in JOVIAL.

FLOAT(X): returns the floating-point representation of the
fixed-point argument X. This operation requires explicit

conversion in JOVIAL.

ODD(X): determines whether the argument X is odd. For an
integer, the least-significant bit is checked directly. For a
floating-point number, the integer portion is checked. A
description of the floating-point process for this determination

is giwen helow.
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Figure 18 Bit Layout of 1750A Flosting-Point Number

To determine whether the integer portion is odd, knowledge
of the internal representation of the 1750A floating-point number is
necessary. The argument X is a JOVIAL specified table item that
makes the components shown in Figure 18 easily accessible. Within
this table is an integer item that overlays the exponent field of X.
This exponent field is the tool needed to check whether the integer
portion is odd or even. Since X has a value of one or greater, and
all floating-point values are normalized, the exponent can be used to
point to the least significant bit of the integer field. Because X is
positive, a one in the least significant bit would indicate the
integer portion is odd. A limit on the maximum value of the
coefficient has been imposed by the functions that use this routine.
This limit prevents the least-significant bit of the integer portion
from falling in the exponent or "LSB" area of the floating-point

coefficient (see Figure 18).

.............
........
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Since the 1750A architecture requires that all floating-point

values be normalized, the most-significant bit is in the first bit

position following the sign bit. The decimal-point is assumed to be
positioned immediately behind the sign bit, but immediately in front
of the most-significant bit. The exponent represents a power of
two; therefore, if € represents the value of the exponent field, the
value of the floating-point number is:  coefficient * 2% |

Equivalently, it is obvious that the decimal-point floats € places to

the left if £ is negative, or € places to the right if positive.
i Knowledge of how floating-point numbers are stored can be

used to determine whether the integer portion of a number is odd.

The following example gives an explanation of the process.

Given the following machine representation of a

floating-point number, determine whether its integer portion

is odd. In the example below, the decimal-point was inserted

only for clarity.
0.1100000006000000000000000000000 10000000000000000 Lw

dince the sign bit of the exponent is zero, the value of

the coefficient is positive. The following two numbers are B"‘?‘
summed together to determine the value represented by this J
coefficient: ?;l_:_:i_f#




e

The exponent field is in bold text, and has the value

one. Therefore, the wvalue of this floating-point
representation is, the coefficient (.75) multiplied by two

to-the-power-of the exponent (1), or 1.5.

75%*2'=15

Another way to compute the result is to shift the
decimal-point in a direction as indicated by the exponent.
The exponent in this case is +1 , s0 the decimal-point is
shifted one position to the right. The number can then be
computed in a similar manner as described above.

This last method demonstrates how to determine
whether this example is even or odd. If the decimal-point
is shifted 1 position to the right, this number will have |
integer bit and 38 fractional bits. The integer bits always
occupy the left-most position of the number. If the exponent
is thought of as a pointer from the left-most side of the
number, the least-significant integer bit can be fourd. The

exponent in this example points to bit position one. Since

the bit is set to 1, this example’s integer value is odd.
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INT(X): return the integer portion of the floating-point i
argument X. The description ODD(X) given above determines the '
least-significant bit of the integer portion of the floating-point
argument. This is used to extract the entire integer portion of _;-_g

4

the argument (bits O through the least significant bit).
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ORTE: 18 JULY 1985
VERS10N: 1.0

NAME: Cos

MODULE NUMBER: 1.0
DESCRIPTION:

This function is lrwoked to compute the fixad-point valus for tha
cosine of an angla that has besn expressed in pi-radians. R
pi-radian con be @pressed as a value betwean -1.0 and 1.0, ond
whose vaiue shen mul tiplied by pi is equivalent to an angle
epressed in radion seasure. Fixed-point has the advantage of
speed of computation over floating=point algorithas, and using
pi-radians furthar exploits this difference by simplifying the
critical step of range reduction. The range reduction effort is
parformed in SinCos, and is used to reduce the passed argument
into the interval ¢(-.5 pi, .5 pi). This range reduction insures
naximum accuracy of the approximated function. Both the argument
‘Xx‘' and the returned value 'Cos’ are expressed in 1750R double—
precision fixed-point representation. Both have one sign bit, one
integar bit, and 30 fractional bits. The actual value returned is
computed by tha function 'SinCos'. Becouse the identity function,
Sini{x) = cos(x - pi/2), 'SinCos’' con be irvoked to compute both
sine and cosine valuas.
PRSSED UARIABLES:Xx - The pi-radion measure for which cosine computed.
Tha argument is in double precision fixed-point.
RETURNS: Cos - the computed valus in double precision fixed-point
MODULES CALLED: SinCos
RUTHOR: Capt. Steven A. Hotchkiss
HISTORY: This project was undertaken as a thesis project for
partial fulfilisent of requirements for an NS degree
In Information Science from tha Alr Force Institute
of Technology. Sponsoring orgonization is the RSD
Languaga Control Branch, Hright Patterson AFB,Oh.
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START
REF PROC SinCos RENT (0O R 1,30;
BEGIN
ITEM  Xx A 1,30; S
* il Cosine Procedure il
b
DEF PROC Cos RENT (Xx) A 1,30;
BEGIN g%
ITEN Xx A 1,30; v
ITEM frg A 1,30; -
;. .
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s IF Xx ¢ 0.0;
) Arg = -Xx;

firg = Xx + .9;
Cos = SinCos(Arg);
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DATE: 18 JULY 1985 :
S UERSION: 1.0 f...
o NAME : Sin DD
e MODULE NUMBER: 1.0 :-:.‘;
r': DESCRIPTION:
- This function is invoked to compute the fixed-point value for the t.-,‘.‘r
\ sina of an angle that has been axpressead in pi-radians. A WY
pi-radian can ba expressed as a valua batwean -1.0 and 1.0, and &
- whose valua whan sultiplied by pi is equivalent to an angie A
t:j opressed in radion seasure. Fixed-point has tha advantaga of oy
4 speed of computation over floating-point algorithas, and using R,
= pi-radians further exploits this difference by siaplifying the -
- critical step of range reduction. The range reduction effort is

parformed in SinCos, and is used to reduce the passed argusent
into the interval ¢(~.3 pi, .35 pi). This rangs reduction insures
maximm accuracy of the approximated function. Both the argument
'Xx' and the returned value 'Sin’ aore expressed in 1750R double—
precision fixed-point represantation. Both have one sign bit, one
integer bit, and 30 fractional bits. The actual value returned is
computed by tha function 'SinCos’. Bacousae the identity function,
Sin(x) = cos(x - pi/2), 'SinCos’' con ba invoked to compute both
sina and cosine valuas.
PASSED UARIABLES:Xx ~ Tha pi-radion measure for which sine is computed.
The argumant is in double precision fixed-point.
RETURNS: Sin - tha cosputed valus in double precision fixad-point
MODULES CALLED: SinCos
AUTHOR ; Capt. Steven A. Hotchkiss
HISTORY: This project was undertoken as a thesis project for
partial fulfiliment of requiresents for an MS degree
in information Scienca from the Rir Force Institute
of Technology. Sponsoring organization is the ASD
Longuage Control Branch, Hright Patterson AFB,0h.
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REF PROC SinCos RENT (Xx> A 1,30; ,
BEGIN o
ITEM Xx A 1,30; P
5 :{w
"ttt Gin  Procedure et 2
OEF PROC Sin  RENT (Xx) A 1,30; L.-
BEGIN 1
ITEN Xx A 1,30; L)
Sin = SinCos(Xx); P

END :
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DATE: 19 JULY 1985
VERSI0N: 1.0

NAME : SinCos
HODULE NUMBER: 1.1
DESCRIPTION:

This function is called by either ‘'Sin’ or ‘Cos’'. Tha algorithe
used is designed around a polynomial approximation of the sine
function. Tha coafficients were derived a
economization of tha power saries. Since ‘Sin' and 'Cos’ use
pi-radions as an argumant, tha economized coafficients wers
aultiplied by an appropriate power of pi. Thae first step of the
algorithe is to reduce the argument to the interval for which
the polynomial is valid ¢-.3 pi, .5 pi). The next step is to
deternine if the argumsent would cause an underfiow, if it does
the vatue of tha argument is the valus returned (sin(x)——>x for
small x). In fixed—point oritheetic, underfiow couses doesn't
cause problems, but checking for underflos prevants unnecessary
computations. Tha computed result of the polynomial reflects the
usa of Horners rule. This function and its argusent are double
precision fixed-point vaiues.

PRSSED VARIABLES: Xx - double precision fixed-point representation of
an angle expressad in pi-radions (radians
divided by pi equals pi-radions). Legal range
of values include -1.0 to 1.0
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RETURNS : A 1730R double precison fixed-point representation
of 'Sin‘ or 'Cos’
MODULES CALLED: None
AUTHOR : Capt. Steven R. Hotchkiss
HISTORY: This project was undertoken as a thesis project for
partial fulfilisent of requiresents for an HS degree
in Information Science from the Rir Force Institute
of Technology. Sponsoring organization is the ASD
Language Control Branch, Hright Patterson AFB,Oh.
START
DEF PROC SinCos RENT (Xx> A 1,30;
BEGIN
CONSTANT ITEM Eps A 1,30 = 0.000356483517;
CONSTANT ITEM PiFixed A 2,20 = 3.141592635386; Lol
CONSTANT ITEM R1 F 39 = -1,044034001140; L——J
CONSTANT ITEM R2 F 39 = +0.8117421707751; L]
CONSTAMT ITEM R3 F 39 = -0 1907476226769, S
CONSTANT ITEM R4 F 39 = +0.0261162033162; 1
CONSTANT ITEM RS F 39 = -2 2352240374056E-3; I:-:.:q
CONSTANT ITEM PiFloat F 39 = 3.141592653589; F3
CONSTANT ITEM One F 3% =+1.0; t'_.:':.j
ITEN Ff A 1,30; L
ITEW Rr A 1,30 S
'
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ITEM  Xx R 1,30; ne

ITEN Gg F 39 Soy

ITEN  Sign A 1,0; Sl

ITEN  Result F 30 ..

n -_.__:i
: " Bonge reduction phase ° G
: 27
- Sign = One; e

~ Ff = Xx; "

IF Ff ¢ 0.0; &’
BEGIN N
Ff = -Ff;
Sign = -Sign;
END

IF Ff > 1.0; k.
BEGIN
Sign = -Sign; PO
Ft =Ff-1.0; N

1 IF Ff > .5;
Ff = 1.0 - Ff;

T
f

< * Test for underflow conditons
IF Ff <= Eps;
' BEGIN i
Rr = PiFixed; -
END g t—-
ELSE
BEGIN
* Begin Computation of polynomial "
= (®F 30 %) ((*A 1,30 *)Ff * Ff));
Result = (((C(RS*Gg+A4 Y*Gg+R3 Y*Gg+R2 *Gg+A 1 Gy,
Rasult = Result * PiFloat + PiFloat;
gﬂ = (R 1,30 *) ( Result );
SinCos = (* A 1,30 *)((* A 1,30 *)C Ar * Ff) * Sign),
RETURN;
END
TERM
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;- DEF PROC Cosf  RENT (Xx) F o 39;
i’ BEGIN
: I TEM Xx F 39; -
¥ I TEM Y F 39; D]
o CONSTANT |ITEM VYmax F 39 = +0.2320350209881E+7; - ]
COMSTANT ITEM PiDivByTeo F 39 = 1.57079632679489; O
d CONSTANT (TEM Zaro F ¥ = 0.0 =
: IF (Yy > Ymax) OR (Yy < ~vmax); o
CosF = Zero;
ELSE Fe
? IF Yy < Zero; *_.«j‘
' V'J = - VUZ : .
N Yy = PiDivByTwo + Vy; ]
: 7
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DATE: 18 JULY 1985
VERSI0N: 1.0

NAME : CosF

MODULE NUMBER: 1.0
DESCRIPTION:

This function is invoked to computa the floating point value for
the cosine of an angle that has been expressed in rodion measure.
Both the argument ‘Xx' and the returned value 'Cos’ are in 1730R
extendad precision floating point representation. The actual
vaiue returned is computed by the function 'SinCosF’'. Becouse of
the identity function, sin(x) = cos(x - pi/2), 'SinCosF’' con
be invoked to compute both sine and cosine values.

PASSED VARIABLES:Xx - The radian measure for which sine is computed.

The argument is In axtended precision float.
RETURNS: CosF - the computed value in extendad floating point.

MODULES CALLED: SinCosF
AUTHOR : Capt. Steven R. Hotchkiss
HISTORY : This project was undertaken as a thesis project for

partial fulfiliment of requirements for an MS degree
in Information Science from the Rir Force Institute
of Technology. Sponsoring organization is the RSD
Language Control Branch, Wright Pattarson AFB,0h.
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START
REF PROC SinCosf RENT (Xx) F  39;
BEGIN
ITEM  Xx F 39;
END

"Rttt Cosf Procedure | e
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CosF = SinCosF(¥y);
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DATE: 18 JULY 1985
| VERS 10N 1.0
. NAKE : SinF
MODULE NUMBER: 1.0
DESCRIPTION:

MODULES CALLED: SinCosF

L 2K 3K BE BE R BE BE L N NK SR BE AR BE BK BK BE AR BE BE BE BE BL N

This function is irvoked to compute the floating point value for
tha sine of an angla that has been expressed in radian measurs.
Both the argumant ‘Xx’ and the returned value 'Sin' are in 17350R
exteanded precision floating point representation. The actual
value returned is computed by the function 'SinCosF'. Because of
the identity function, Sin{x) = cos(x - pi/2),
ba invoked to compute both sine and cosine values.
PRSSED VARIABLES:Xx - Tha radion measure for which sine is computed.
The argumant is in eaxtended precision float.
RETURNS: SinF - tha computed value in extended floating-point.

AUTHOR: Capt. Steven A. Hotchkiss

HISTORY: This project was undertaken as a thesis project for
partial fulfiliment of requirements for an MS degree
in Information Science from the Rir Force Institute
of Technology. Sponsoring organization is the RASD
Languaga Control Branch, Wright Patterson AFB,0h.

‘SinCosf’ con

L 3R BE SR B BE BB SR B BE BE BE BN BE BE OB B BE BE BE BE BK B S J

L
START
Y
» N REF PROC SinCosF RENT (Xx) F  39;
) BEGIN

ITEN  Xx F39;
END

DEF PROC SinF RENT (Xx)
BEGIN

) ITEN  Xx F 39;

SinF = SinCosF(Xx);

RETURN;

'I END
. TERH
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I’ * DATE: 19 JULY 1989 *
! * UERSION: 1.0 * ]
: * NAME: SinCosF *
. * MODULE NUMBER: 1.1 *
: * DESCRIPTION: o
} * This function is called by either 'SinF’ or ‘CosF’'. The algorithe*
» used is a polynomial approximation of the sine function. The *
l . coaffecients were determined through a Chebyshev Economization * .
5 . of the power series, and were carried out to 1750R machine » oo
» precision. For efficient computation, the poiynomial was * 2
* computed using Hornar's Rule. This function returns an extended * :
* precision floating-point value. »
* PASSED VARIARBLES: Job - a flag indicating whether to compute either *
i * Unsimorcosimofmmgloaxprm.dm *
» radions .
* fibsX - the absolute value of the angie under *
* consideration *
* Yy =~ originally sat to AbsX, but modified *
* by tha algorithe for ronge reduction of *
) » the original angle. *
J * RETURNS: An Extended precision floating-point approximation to *
: * a user requasted call to either ‘SinF' or 'Cosf'’ *
* MODULES CALLED: None *
*  AUTHOR: Capt. Steven A. Hotchkiss *
; * HISTORY: This project was undertaken as a thesis project for *
- » partial fulfillment of requirements for an IS degree *
' 'Y * in Information Science from tha Rir Force Institute »
: = * of Technoliogy. Sponsoring organization is the ASD *
: » Longuage Control Branch, Wright Patterson AFB,0h. *
» »
I START
DEF PROC SinCosF RENT (Xx> F  39;
BEGIN
: CONSTANT ITEM R1 F 39 = ~1.06440340668480;
v CONSTANT ITEM R2 F 39 s +0.8117424252778; v
N CONSTANT ITEM R3 F 39 s ~0. 1907318239486,
CONSTANT ITEM R4 F 39 = +2 61478451583 10E-2; o
CONSTANT ITEM RS F 39 = ~2.34603879380600E-3; T
CONSTANT ITEM RS F 39 = +1, 4832528223590E~4; ]
CONSTANT ITEM R? F 39 = -0, 7230447557 180E~-D; -
i RN
; CONSTANT (TEM Eps F39 = +0. 1348600 1523486 (E-S; L
: CONSTANT ITEM Pi F 39 s 3, 1415926535898, s
CONSTANT ITEM One F 39 = 1.0; L]
g CONSTANT ITEM 2ero F 39 = 0.0; N
- CONSTANT ITEM OnehHalf F39 = 0.5 L)
[ CONSTANT |ITEM OneDivByPi F 39 a +0,318309886 18379E0; i
v
" ITER Sign F 39; B
» ITEM Gg F 39; ]
; ITEM  Xx F 39; 1
- ITEM PiRadians F 39;
F -
T
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i
2.
v
v ITEN  Result F N;
h TABLE Overlays (0> H 6;
s BEGIN

ITEN Ff F 39 P0SCO,0;
3 ITEM Fexp S 7 POSCE,1):
f_ ITEN Fbits B 48 P0SCO,0);
L. ITEN Wy F 25 P0SCO,3);
. ITEN vYop S 7 POSB.4);
ITEN ¥bits B 48 POSCO,3);
. END

i Ff¢0) = Xx * OnaDivByPi;
Sign = One;

IF FfC0) < Zero;
BEGIN
Ff(0> = -Ff(0);

Sign = - Sign;
END

Yy(0)> = Zaro;
IF Fexp(0) >= 1{;
BEGIN
IF BIT(Fbits(0),Fexp<0), 1) = 1B'1";
Sign = -Sign,
Yexp<0) = Faxp(0);
BIT(Ybits<0),0,Fexp(0>*1) = BIT(Fbits<0)>,0,Faxp(03+1);
END

PiRadians = Ff(0) - Yycd);

IF PiRadians > OneHalf;
PiRadians = One - PiRadians;

IF PiRadians < Eps;
Result = PiRadions * Pi;
ELSE
BEGIN
Gg = PiRadians * PiRadians;
Result = (((C(C(C R? * Gg + R6) * Gg + RS) * Gg + R4) * Gg + R3) * Gg
+ RA2) * Gg + R1) * Gg) + One) * PiRadions * Pi;
END

SinCosF = Result * Sign;

RETURN;
END
TERN

................................................




DRTE:
VERSION: 1.0

6 August 1985

NAME : Cot
MODULE NUMBER: 1.0
DESCRIPTION:
Cot is invoked to compute the cotangent of a user passed angle.
angle is expressed in pi-radians: pi-radions —> radions/pi.
The ronge of legal values for the angie are ¢(~1.0,1.0)> Both the
argusent and resuit are expressed as fixed point results. The
valua returned is computed by the function TanCot.
PRSSED VARIABLES: Xx -~ the angle in pi-radians
RETURNS : a value for the cotangent of Xx.
plus and minus infinity ore considered as -4095 and 4095
MODULES CALLED: TanCot
AUTHOR : Capt. Steven A. Hotchkiss
HISTORY: This project was undertcken as a thesis project for
partial fulfiliment of requirements for an MS degree
in Information Scienca from the Air Force Institute
of Technology. Sponsoring organization is the ASD
Longuage Control Branch, Wright Patterson AFB,0Oh.

gi*iii*
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START
REF PROC TanCot RENT(Arg, Job) R 12,18;
BEGIN
ITEM Arg A 1,30;
ITEM Job B;
END

DEF PROC Cot RENT(Xx) A 12,18;
BEGIN

DEFINE Tangent *1B'0'";
DEFINE Cotangent “1B'1'“;

ITEN  Xx A 1,30;
ITEN  Job B;

Job = Cotangent;
Cot = TanCot(Xx, Job);

RETURN;
END
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DATE: 6 Rugust 1985
VERSION: 1.0

NAME : Tan

MODULE NUMBER: 1.0
DESCRIPTION:

Tan is invoked to compute the tangeant of a user passed angle. The
angla is axpressed in pi-radions: pi-radions —> radions/pi .
The range of legal values for the angle are (~1.0,1.0) Both the
argusent and result are expressed as fixed point resuits. The
vaiue returned is computed by tha function TanCot.
PASSED VARIABLES: Xx - the angle in pi-radians
RETURNS : a valua for tha tangant of Xx.
plus and minus infinity are considared as -4093 and 4093
MODULES CALLED: TanCot
AUTHOR: Capt. Stevan A. Hotchkiss
HISTORY: This project sas undartaoken as a thesis project for
partial fulfiliment of requirements for an MS degree
in Information Scienca from tha Air Force Institute
of Technoiogy. Sponsoring organization is the ASD
Language Control Branch, Wright Patterson AFB,Oh.

LR 2K 3R BN BN B R R BN BE R N BE SR BE BE B BN R N N J
L3R 28 3K BE BE JR BR BE BE BE BE BE BE BK BE BE BE SR SR BK AR J

START
REF PROC TanCot RENT(Arg, Job) A 12,18;
BEGIN
ITEM Arg A 1,30;
iITEM Job B;
END

B Tan Procedure B L

DEF PROC Tan RENT(Xx)> A 12,18;
BEGIN

DEFINE Tangent *1B'0'";
DEFINE Cotangent “1B'1'";

ITEM Xx A 1,30,
ITEM Job B;
Job = Tangent;
Tan = TanCot(Xx, Job);
RETURN;
END
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* DATE: 6 August 1989 *
* VERSION: 1.0 "
* NAIE: TanCot *
* MODULE NUMBER: 1.1 L
* DESCRIPTION: *
* This function is invoked by either ‘Tan' or ‘Cot’' to compute the *
* appropriate valua for a given angle. Tha angle ‘Arg’ is given in *
» pi-radians: pi-radian —> radians/pi. Since tan(x) = 1/cot(x) * ey
* both functions can calil this routina to computa the dasire values.* SO
* Since Tangent and Cotangant approach plus or ainus infinity ot » o,
* certain angles, a check is required to prevent degradation dus to * ]
* underfios or overfiow. plus and minus infinity for this * RS
* are considered to be 4093 and -4095 respectively. The coefficient *
* used in the two polynosials ware deternined through the PRDE * -
* mathod. The original poiynomial was daterained through a » L;,—j
* ff econimization of tha power series for tangant. * L
* PASSED UARIABLES: Arg - an angle expressed in pi-rodions » o
. Job - talls whather to computa tangent or cotangent * "
* RETURNS: Either the tangent or cotangent of a given angle. » gy
* there are 12 integer bits and 18 fraction bits for this »* RN,
L function. * Eﬂ
* MODULES CALLED: None * S
* RUTHOR: Capt. Staven A. Hotchkiss * ]
* HISTORY: This project was undertaken as a thesis project for  * ARy
* partial fulfiliment of requiresents for an NS degree * RN
» in Information Science from the Air Force Institute * S
“, » of Technology. Sponsoring organization is the ASD * -
g * Language Control Branch, Wright Patterson AFB,Oh. * e
» .

DEF PROC TanCot RENT<Arg, Job) A 12,18,
BEGIN

le:

. e e e e -y- .
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DEFINE Tangent “1B8°'0'"; IR
DEFINE Cotangent "1B'1'"; ]
DEFINE Pg "Polynomial ¢0)>";

DEFINE Qg "Polynomial (1);

ITEN Job B;

ITEN Arg A 1,30;

ITEM Xx A 1,30;

ITEM Xfloat F 39;

(TEM Gg F 39;

ITEM Sign F N,

ITEM Ona STATIC F 39 = 1.0;

CONSTANT ITEM PiFloat F 30 = 3.141592653590;
CONSTANT ITEM PIFixed A 2,29 = 3.1415926338;
CONSTANT ITEM Eps A 1,30 = 0.00007773138; RO
COMSTANT ITEM UpperLimit A 12,18 = 4095.0; o
TN
v
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ITEM PG STRTIC
CONSTANT ITEM Pt
CONSTANT ITEM P2
OVERLAY PiFloat: PO;

ITEN Q0 STATIC
CONSTANT ITEM Qf
CONSTANT ITEN Q2
OVERLAY One: QO;

nmm
3
!
b
g

nnm

39;
30 =, 38896 1479130,
339 = 1.355953008405,

TRBLE Array €0:1);
BEOIN
ITEM Poliynomial F 239;
END

ITEM Numerator
ITEN Denominator
{TEMN Num

ITEM Den

> -

-

(=« endf ed
OQ‘OO

-

OUVERLAY Numerator : MNum;
OVERLAY Denominator : Den

Sign = One;
Xx = frg;

IF Job = Cotangent;
BEGIN
Numerator = 1;
Denominator = 0;
END

ELSE
BEGIN
Nuserator = 0;
Denominator = 1;
END

IF Xx ¢ 0.0;
BEGIN
Xx = =Xx;
Sign = -Sign;
END

IF Xx>1.0;
Xx = Xx - 1.0;
IF Xx > .S;
BEGIN
Xx = 1.0 - Xx;
Sign = -Sign;
END
IF Xx > .25,
BEGIN
Xx = .3 - Xx;
BIT(Num,?7,1) = NOT BIT(Num,?,1);
BiT(Den,?,1) = NOT BiT(Den,?, !3;
ENO;
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R Xfloat = (* F 39 *) (Xx); g
p S IF Xx ¢ Eps; 4

BEGIN ‘
Pg = Xfloat * PiFloat; | -
09 = m; ':.:-".'!
N END 5y
N ELSE KN
~ m'" :.-,1"
Gg = Xfloat * Xfloat; S
Pg = ((P2 * Gg + P1) * PiFloat + PO) * Xfloat;
Qg = ¢ Q2 * Gg + Q1) * Gg + QO;
m 3

TanCot = (* A 12,18 *) (Sign * e
Polynomial (Numerator )/Polynonial (Denominator));

‘r‘f
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RETURN,
END
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DATE: 19 JULY 1985
10M: 1.0
NAME : CotF
MODULE NUMBER: 1.0
DESCRIPTION:
This function is invoked to compute the cotangent of an angle
expressed in radian seasure. Decause of the identity function
Tan(X> = 1/Cot(X), tha two functions 'Tan' ond 'Cot’ con both
invoke the function ‘TanCot' to compute thair respective values.
Both tha argusent and the result of this function are expressed
in 1730A extended precision floating-point representation.
PASSED URARIABLES: Xx - the angle of interest, expressed in extended
floating-point representation. Tha angle nust
lie batween ( -2329340.90332, 2329349.90332 )
RETURNS : Cotangant of tha angle Xx (~1.0 to 1.0) in extendad
floating-point represantation
MODULES CALLED: TanCotF
AUTHOR: Capt. Steven A. Hotchkiss
HISTORY: This project was undertaken as a thesis project for
partial fulfiliment of requiresents for an MS degree
in Information Science from the Air Force Institute
of Technology. Sponsoring organization is the ASD
Language Contro! Branch, lright Pattarson AFB,Oh.

R R BRERREERRERETRRETREERERERS
EEEEEREX N X I I 3 3 3 3 I B K N I I N I B A

START
REF PROC TanCotF RENT (frg, Job) F  39; :
BEGIN Tl
(TEM firg F 39; _‘_.:_;,J
I TEN Job B; o
Sttt Cotf Procedure SRRttt o
.

DEF PROC CotF RENT (Xx) F  39; S
BEGIN L

DEF INE Tangent "18'0'";

DEFINE  Cotangent "1B'1'";
I TEN Xx F ;9;
I TEM Job B; | .
Job = Cotangent;
CotF = TanCotF(Xx, Job); =
RETURN; _ "_:
END |

:
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DATE: 19 JULY 1985 -

UERSION: 1.0 -
NAME : TanF g
MODULE NUMBER: 1.0 N
OESCRIPTION: 5]
This function is irvoked to compute the tangent of an angle N,
axpreassed in rodian seasure. Becauss of the idantity function ;

Tan(X) = 1/Cot(X), tha two functions 'Tan' and ‘'Cot’' can both k.

irvoke the function ‘TanCot' to cospute their respective values. Ay
Both tha argumant and the result of this function are expressed oy

in 1750 extended precision fioating—point representation.

PRSSED UARIABLES: Xx - the angle of interest, expressed in extended
floating-point representation. The angie sust
lie between ¢ -2329349.90332, 2329349.90332 )

RETURNS : Tangant of the angle Xx (~1.0 to 1.0) in extended

floating-point represantation

MODULES CALLED: TanCotF

AUTHOR : Capt. Steven R. Hotchkiss

HISTORY: This project was undertaken as a thesis project for

partial fulfiliment of requiremants for an MS degree
in information Sciance from the Rir Force Institute
of Technology. Sponsoring organization is the ASD
Languoge Control Branch, liright Pattarson AFB,0h.

SR K B B BE BE B BK BE SR BE BE BE OB BE OBE B BN K BN B B A AL AN
L 2R 2R K B BE BK BE BE BE SR BE B BE BK B BE BN BE BE BE R R N AN

REF PROC TanCotF RENT (fArg, Job) F  39;

BEGIN PO
| TEM Arg F 3; RO
{ TEM Job B; z._-;._l

- .

“bpamttibtttt  Tanf Procedure "ok

DEF PROC TanF RENT (Xx) F  39;

BEGIN L«

DEFIN  Tangent “18°0""; L
DEFINE  Cotangent 181"

ne

I TEM Xx F 0; R

I TEN Job B; e 3

Job = Tangent; Ry

TarF = TanCotF(Xx, Job); T
RETURN; T

END :-._.%

TERM i
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DATE: 19 JULY 1985
VERSION: 1.0
NAME : TanCotF
MODULE NUMBER: 1.1
DESCRIPTION:
This function is called by either 'Tan’' or ‘Cot’ to compute the
tangent or cotangent of thair respectiva angles. The result is
computed by using a Rational approximation [ PCX)>/Q¢X)> 1. The
coafficients used were found by a Pade approximation of the
Chabyshav economization of tha powar series for tangant functions.
Tha result of this function is In 1750R extended precision
floating-point represantation.
PRSSED URRIABLES: Xx - the angle under consideration, expressad in
radians. Xx sust |ie between
( =2320349.90332, 2329349.90332)
Yy - absolute value of Xx, used to prevent overfiow
Iflag - designates whather to computa Tan or Cot
RETURNS : 1750A extended precision float for Tan or Cot
MODULES CALLED: None
AUTHOR: Capt. Steven R. Hotchkiss
HISTORY: This project was undartaken as a thesis project for
partial fulfiliment of requiresants for an MS degree
in Information Science from tha Rir Force Instituta
of Technology. Sponsoring organization is the ASD
Language Control Branch, Hright Patterson AFB,Oh.
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DEF PROC TanCotF RENT (Arg,Job) F  39;
BEGIN

DEFINE Tangent  “1B°0'";
DEFINE  Cotangent “1B'1'";

DEF | NE Pg “Polynomial<0>”;
DEF INE Qg “"Polynomial (1)";
TRBLE Array €0:1);

BEGIN

ITE® Polynomial F 39;

END
TABLE Overiays <0) W 6;

BEGIN

ITEM Xx F 39 P0SC0,00;

ITEM Xexp S 7 POSCB,1);

ITEN Xbits B 48 P0S(0,0);

ITen Wy F 39 PO0SCO,d);

ITEN Vaxp S 7 POS<8,4);

ITEM WVbits B 48 P0S<0,3);

END !
ITEN Arg F 99, BN
ITEM Job B; D
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ITEM MNuserator U 8;

ITEN Denominator U 8;

ITEN Num B 8,;

ITEN Den B 8,

OVERLAY Numerator @ MNum;

OVERLRY Danominator Dun,

ITEN Og F 39;

ITEM Sign F 39;

CONSTANT I TEM PO F 39 =+1.0;

CONSTANT ITEM P1 F 39 =-1.2661071041410;
CONSTANT | TEM P2 F 30 =40.2733219453881;
CONSTANT I TEM P3 F 39 ==7.1046857833030E-3;
CONSTANT 1 TEM Q F 39 =+1.0;

CONSTANT ITEM o F 39 =—4 5559752378380,
CONSTANT | TEM Q2 F 39 =+2,2740008937200;
CONSTANT | TEN 3 F 39 =-0,20039909713%4,
CONSTANT ITEM Ymax F 30 =40.23203499033203E+7;
CONSTANT ITEM Zero F 39 =0.00;

CONSTANT [ TEM Ona ‘F 3¢ = 1.00;

CONSTANT I TEM OneHal f F 39 =0.50;

CONSTANT 1 TEN Onefourth F 39 = 0.25;

CONSTANT  (TEM TwoDivByPi F 30 =+40.6366197723073;
CONSTANT | TEM PiFloat F 390 =+3.1413926535898;
CONSTANT | TEM Eps F 39 =+0. 1348699 152348E-5;
Sign = One;

¥y<0)> = Zero;

Xx(0) = frg * TwoDivByPi;

IF Job = Cotangant;
BEGIN
Numerator = {;
Denominator = Q;
END

ELSE
BEGIN
Numerator =0,
Dencainator = {;
END

IF Xx<0) < Zaro;
BEGIN
Xx(0) = -Xx(0);
Sign = -Sign;
END

IF (Xaxp<0> > 0> AND (BIT(Xbi ts¢0), Xaxp(0), 1> = 1B'1");
BEGIN
Sign = -§Sign;
BIT(Num,?,1) = NOT BIT(Num,?, 1);
81T(Den, 7 1) = NOT BiT(Den, 7 1)

anl
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:
;

h S IF Xexp<0) » 1;
R BEGIN

Yaxp<0) = Xexp(0);
BIT(Ybits<0),0,XaxpC0>+1) = BIT(Xbi ts¢0),0, Xaxp(0)*+1);

END;
Xx¢0)> = Xx<0) - ¥yc0),;

IF Xx<0)> <> Zero;
Xop(0) = Xaxp(0) = (* S 7 *)3( 1 );

IF Xx<0> > OneFourth;
BEGIN
Xx<0> = Onabal f-Xx<0);
BIT(Nhum,?, 1) = NOT BIT(MNum,?,1);
BI1T(Dan,?, 1> = NOT BiT(Dan,?, 1);
END

IF Xx¢0) ¢ Eps;
BEGIN
Pg = Xx(0) * PiFloat;
Qg = One;
END
ELSE
BEGIN
Gg = Xx(0) * Xx(0);
Pg = C(C(P3 * Og + P2) » Og + P1)> » Og * PiFloat + PO) * Xx(0);
Qg = CC Q3 * Gg + G2) * Gg + Q1) * Gg + QO;
END

TonCotF = Sign * Polynomial (Numerator)/Poliynomial (Denominator);
RETURN;
END

..............
.......................
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: 21 August 1985
VERSI(ON: 1.0

: RACos
: 1.0

Lt

é
i

DESCRIPTION:

This program is used %o call ASinCos. ASinCos is the
routina that actually computes the inversa cosina for
argueent Xx. They are coded this way becousa both ASin
ACos can use the some routine for their computations.
This is bacause of tha identity function
ACos(X) = pi/2 - ASIn(x>

PRSSED URRIABLES: Xx - the cosina for which an angle is to be

computed.
RETURNS ; ACos - exprassad in fixed-point pl-radians
MODULES CALLED: RSinCos

" .
"
-
-
.
T~

'

.

-

LK 3R BE 3K B BE K BE BE BE K R AR K 2R N N 2R JE N A M
LB 3R 3R BE BE BE BE BE BE BE BE K B BE BE K BE BE 3R BE K K B

AUTHOR : Capt. Steven A. Hotchkiss
HISTORY: This project was undertaken as a thesis project for
partial fulfillment of requiremants for an MS
4 in Information Science from the Rir Force Institute
- of Technology. Sponsoring organization is the ASD
z Languaga Control Branch, Wright Patterson AFB,0h.
START
] & REF PROC RSinCos RENT(Arg, Job> A 1,30;
DR BEGIN
IT]EN Arg A 1,30;
ITEM Job U 8,
END
. RS ACOS Procedure | REREERERitas

DEF PROC RCos RENT(Xx) A 1,30;
BEGIN
DEF INE ArcSine 0",
DEF INE ArcCosina "1";

ITEN Xx A 1,30;
ITEN Jb U  8;

-
. PR . .
S e
', Tatela e
S TSEPCN

Job = RArcCosine;
ACos = ASInCos(Xx, Job);

NN

’
1

RETURN,
END

’

+ e “x
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START

DATE: 21 August 1985
VERS10N: 1.0
NATE : ASin

: 1.0
DESCRIPTION:

:
:

This progrom is used to call ASinCos. ASinCos is the
routinae that actually computes the irmverse sine for
argument Xx. They are coded this eay becaouse both ASin
ACos can use the some routine for their computations.
This is bacausa of tha idantity function

ACos{(X> = pi/2 - ABIN(x)

PRSSED UARIABLES: Xx ~ the fixed-point inverse for which an angle is

is to be computed
RETURNS :
CALLED: fASinCos

AUTHOR : Capt. Steven A. Hotchkiss

ASin - tha angie in pi-radions.

HISTORY: This project was undertaken as a thesis project for
partial fulfiliment of requiresents for an MS degree
in Information Science from the Rir Force Institute
of Technology. Sponsoring organization is the ASD
Language Control Branch, Wright Patterson AFB,0h.

REF PROC ASinCos RENT(Arg, Job> R 1,30;

BEGIN
ITEM Arg A 1,30;
ITEN Job U  8;
END

L ARSin Procedure

DEF PROC RSin RENT(Xx) A 1,30;

BEGIN

DEFIiNE ArcSine "0",
OEF INE ArcCosine "17;
ITRN Xx A 1,30;
ITEN Job U 8;

Job = ArcSine;
RSin = ASinCos(Xx, Job);

RETURN;
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l * DATE: 21 August 1983 »

" * UERSION: 1.0 »

- * NRME: ASinCos »

* MODULE NUMBER: 1.1 *

z * DESCRIPTION: »

< * This progrom is eritten to return the correct angle for a user *

z * passed arguesent. Tha argusent represants the Sine or Cosina of *

I b the angie to be returned. The returned angla is in pi-radion *
* saasure (pi-radian => rodians/pi). This routine can be called *
* by either RSin or ACos bacause of tha identity function *
» fACos(x> = pi/2 ~ ASIn(x). The coafficients ware deterained by *
* of the mathod of Chebyshev expansion as described in ‘A First *
* Course in Numerical Analysis’ by Anthorw Raliston. *

i * PASSED VARIABLES: frg - tha sine or cosine of the angle to be *

. » daterained. Uariablae is in fixed-point *
* Job ~ telis whather to compute for ACos or ASin »

) * RETURNS: The angle representation for the argument. Tha angle *

- * is in pi-radions. Leagal values fal! in the ronge »

E » -1.0, 1.00 *
* MODULES CALLED: None *

) *  AUTHOR: Capt. Steven R. Hotchkiss *
* HISTORY: This project was undertaken as a thesis project for *
» partial fulfillsent of requirements for an MS degree *
» in information Sciance from the Alir Force institute *
* of Technology. Sponsoring organization is the ASD »

.' * Language Control Branch, Wright Patterson AFB,Oh. »

de . :
START
REF PROC Sqrt RENT(Xx) F 39;
BEGIN

. ITEM Xx F 39;

- END

- “ Socik A A AsinCos Procedure e

l.

OEF PROC ASinCos RENT(Arg, Job)> A 1,30;
BEGIN

. DEFINE ArcSina ‘0",
4 DEFINE ArcCosine  *1°;
DEFINE Positive "0";
DEF INE Negative i

ITEN  Job U 8
5 ITEM i u s
g ITEN Arg A 1,30;
ITEN  Result A 1,30;
: ITEM Pg F 39;
ITEN Qg F 39 o
.-.:‘
'-H;__P .‘.l- A ‘\~ ; 'A- - l~ A. -




s TRBLE Overiays0) W 6;

Voo BEGIN

h ITEN Wy F 39 P0SC0,0);
, ITEM VYexp s 7 POS(8, 1);
ITEM Gg F 39 P0S(0,3);
.~:; ITEN Gexp S ? P0OS(8,4);
“- END

-‘i CONSTANT TRELE Constants (0:1) W 4 = 0.0, 1.0, 0.5, 0.5;
BEGIN
ITEM Ra A 1,30 P0S(0,0);
ITEN & A 1,30 POSCO,2);
N

CONSTANT |ITEM Eps
CONSTANT ITEM OneOvarPi
CONSTANT ITEM One
CONSTANT ITEM OneHalf
CONSTANT (TEM Oneint
CONSTANT ITEM Xmax

9.587379024290E-5;
. 318300880 18379;
.0;
S

’

[ B B B B
.. .

3888 888 88883
:--O—O

3%

CONSTANT ITEM Pt
CONSTANT ITEM
CONSTANT I TEM

. 273 16555290596E+1;
. 29058762374839E+1;
. 39430 144 1932406E+0;

38

CONSTANT I TEM
CONSTANT | TEM
CONSTANT I TEN
" CONSTANT | TEM

. 16509933202424E+2;
. 24804720009 164E+2;
. 10333867072113€E+2;
. 10000000000000E+1;, *

MMM MMM DdomMmTm

8828
348 LS

Yy(0) = (* F 39 *)( ABS(Arg) );

IF Yy(0)> <= OneHalf;

BEGIN

Ii = Job;

IF ¥y(0) < Eps;
BEGIN
Result = ¢* A 1,30 *) (Yyc0)> * OneOverPi O,
GOTO L1;
END

g;ém = Yy(0) * Yye0);

ELSE
BEGIN
li =1 = Job;

IF Yy<0) > One;
BEGIN
ASinCos = Xmax;
ABORT ;
END

Gg <O
Gaxp<0)
v
Yeoxp(0)
END

One - Yyc0);

Gexp<0) - Oneint; "~ Gg =0Gg/2 or Gg=Gg * 2 » —-{ "
-Sqrt(6g<0));

Yexp(0) + Onaint; "~ Yy = Yy*2 or Yy =Yy * 2 »== { *

110
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Pg = ((P3 * Gg(0) + P2) * Gg(0) + P1) * Gg(0);
g =« 6ge0> + @2) * Gg<0) + Q1) * Gg<0) + QO;

Rasult = (* A 1,30 *) ((Yy(0)> + Yyc0) * Pg / Qg) * OneOverfi );

Lt IF Job = ArcSine,
BEGIN
Result = (= A 1,30 *) ( Result + Aacli) );

IF Arg < 0.0;
Reasuit = -Rasult;
END
ELSE "ELSE Job = ArcCosine”
iF Arg < 0.0;
Result = (* A 1,30 *) ¢ BbC(li) + Rasult J;

Resuit = ¢(* A 1,30 *) ¢ AaCii) - Result );

ASinCos = Result;

RETURN;
‘ END
¢ TERM

L e
L et
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DATE: 21 August 1985
VERSION: 1.0

NAME fCosf

MODULE MUMBER: 1.0
DESCRIPTION:

This progrom is used to call ASinCosf. ASIinCosf is the
routina that actually computes the inverse cosinae for
argueant Xx. They are coded this way becausa both ASinf
ACosf can usa the same routine for their cosputations.
This is because of the identity function
ACos(X) = pi/2 ~ ASIn(x)

PRSSED URRIABLES: Xx - the cosine for which an angle is %o be

computed.

RETURNS: ACosf -~ expressad in floating=-point
CALLED: RSinCosf
AUTHOR: Capt. Steven A. Hotchkiss
HISTORY: This project was undertioken as a thasis project for

partial fulfillment of requirements for on NS degree
in Information Science from the Rir Force Institute
of Technology. Sponsoring organization is the ASD
Language Control Branch, Wright Patterson AFB,0h.

L ]
]
]
*
L ]
]
*
»
»
L
»”
]
*
*
L
»
»
®
”
*
*
-
»

TR BEREEREREEREREREEREREEREEERS

START

REF PROC ASinCos RENT(Arg, Job) F 39;
BEGIN
ITEN Arg F  39;
ITEM Jb U 8

END
) ACosf Procedure seapafeassiesieafesferisaerieaferierfene =
DEF PROC ACos  RENT(Xx) F39;
BEGIN
DEFINE ArcSine  "0°; o

OEF INE ArcCosine  “1°;

’

ITEM Xx F 39;
ITEM Job U 8

Job = ArcCosine;
ACosf = ASinCosf(Xx, Job);

- ".‘1

. _-_._1

SR

END '..':'.\1
TERN b
—

............
.........
-----------------
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DATE: 21 Rugust 1985
VERSION: 1.0

NAME ASinf

MODULE NUMBER: 1.0

DESCRIPTION: '
This program is used to call ASinCosf. ASinCosf is the

K _.‘,-
st
L]

S R

‘e
<’

a !

L ] L
» .
» »
» »
» -
» .
" . ;
» routing that actual ly computes the inverse sine for * o
hd argueent Xx. They ore coded this way becausa both ASinf =+
* ACosf con use the same routine for their computations. # 3K
» This is bacausa of the identity function . ]
- ACos(X) = pi/2 - ASin(x) . Ll
* PRSSED VUARIABLES: Xx - the floating-point inverse for which an angle is* o
* is to ba computed * S
* RETURNS: ASinf -~ tha the angle . » o
* CALLED:  ASinCosf * i
* AUTHOR: Capt. Steven R. Hotchkiss » S
* HISTORY: This project was undertoken as a thesis project for * S
» partial fuifilisent of requirements for an ME * RO
* in Information Science from the Air Force Institute * e
* of Technology. Sponsoring organization is the ASD * "r_'.jj
» Language Control Branch, Wright Patterson AFB,Oh. . i_“
- . *» MRAICH
=S
)
STRRT \ i
oY

REF PROC RSinCosf RENT(Arg, Job) F 39; L-‘
BEGIN
ITEM Arg F 39; L d
ITEN Job U 8; N

= okl ASinf Procedure iRy ¢ e :

1

-

DEF PROC ASin  RENT(Xx) F39; ;

BEGIN S

DEFINE ArcSine  "0"; E_.
DEF INE ArcCosine "1";

ITEN Xx F  39;

ITEN Job U  8;

aver,
Lalep a?

P e T T
. .
R
AT R S
. s ', .

Job = ArcSine; o

4

ASinf = RSinCosf(Xx, Job); S
N
e
RETURN; e

~y. -
+
]

END

g
AR |

.
L ]

'

-
L
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) * DATE: 21 August 19835 * S
* UERSION: 1.0 * L,
* NAE: ASinCosf » S
* MODULE MUMBER: 1.1 * el
* DESCRIPTION: *
* This program is sritten to return the correct angle for a usar * o
* passed argusant. The arguaent represents the Sine or Cosine of * 3

* the angie to be retuned. The returned angle is in radian » 5
. measure. This routine can be cal led . Bey
" by aithar RSInf or ACosf becausa of the identity function * O
» ACos(x) = pi/2 -~ ASIn(x). The coafficients wera detersined by . e
» of the method of Chebyshev expansion as described in ‘A First » L
. Course in Numerical Analysis’ by Anthony Ralston. »
* PRSSED URRIRBLES: Arg ~ tha sine or cosine of tha angle to be . o
» deterained. Variable is in floating-point » |
»* Job ~ tells whather to compute for ACosf or ASiInf * o
* RETURNS: The angle representation for the argument. The angle * e
» is in radions. Leagal values fall in the range * R
* MODULES CALLED: None *
* AUTHOR: Caopt. Steven A. Hotchkiss » Tl
* HISTORY: This project was undertoken as a thesis project for * ;_'_
* partial fulfi)isant of requiresants for an MS .
* in Information Science from tha Air Forcs Institute » ot
» of Techmology. Sponsoring organization is the ASD b
* Language Control Branch, Wright Patterson RFB,0h. *

. »

ssafcaissisaioiesfeaiuajeesfestafrajsaisaieafeafiaieaieaiestesinieoisaimisaiatafesieaiasiosasiriesionfesiooiesiuapafestoniesieaissioaaisieafrsisafesionisojssireinieafeasiupuaisaissicafesicaioiosistesies a
Qe -
START ::.:
'._\3
REF PROC Sqrt RENT(Xx) F 9; . o
BEGIN .]_::
I TEM Xx F 39; oy
* sestsaaieafeatsaestesteatesieseniesteal AsinCos Procedure seafesieriesieaiesiesisagesteniesiegesiols * :.;
-
DEF PROC ASinCos RENT(Arg, Job) F M; E—-

BEGIN

DEFINE ArcSine "0";
DEFINE ArcCosine "1°;

L PR
DEF INE Positive  "0°; £
DEFINE Negative  "1°; 25
ITEN Job u 8 o
ITEM L U 8 e
ITEN fArg F o 39; R
ITEM Result F 39 B
ITEN Pg F 39 A
ITeEN Qg F N; .
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A
TRBLE Overlays(0> W 6; o
vt BEGIN o
ITEM wy F 39 P0S(0,0); N
ITEN Yoxp S 7 POSS,1); L.
ITEM Gg F 39 P0S(0,3); a
ITEM Gaxp S 7 P0S(S8,4); -
B0 oA
.\.l\
CONSTRNT TRELE Constants (0:1) W 6 = %
gég, 1.570796326795, 0.7853981633974, 0.7853961633974; ;.
IN T
ITEM Ra F 30 P0SC0,0); o
ITEN Bb F 39 PO0S(O,3); oy
CONSTANT ITEM Eps F 30 = 9.567370924200E-5; o
CONSTANT ITEM OneOverPi F 30 = (0.31830089618379; (..
CONSTANT ITEM One F 39= 1.0
CONSTANT ITEM OneHalf F 39 = 0.5,
CONSTANT ITEM Onaint S 7= 1; -~;
CONSTANT ITEM Xmax F 39 = MAXFLOAT(39); <
CONSTANT ITEM Pf F 30 = 40.8537216436677E+1; -
CONSTANT ITEM P2 F 30 = 0. 134287070 1343E+42;
CONSTANT ITEM P3 F 30 = 40.506831S761775E+1;
CONSTANT ITEM P4 F 30 = -0.5540406099034E+40;
CONSTANT ITEM QO F 39 = +0.5122320862011E+2; o
oo CONSTANT ITERt QI F 30 » -0. 10362273 18040E+3; L_
: CONSTANT ITEM Q2 F 30 = +0.687195076538 1E+2;
CONSTANT ITEM Q3 F 39 = 0. 1642055755 7506+42;
= COMSTANT ITEM Q4 F 30 = +0.10000000000000E+1; *

V(0> = RBS(Arg);
IF Yy(0) <= OnaHalf;

BEGIN
{i = Job;
BEGIN

Result = ¥yc0); -
GOTO L1; L
END

8gC0) = Yy(0) * YyC0);

END

EGIH RIY

=1 = Job; L
IF %<0 > One; o
BEGIN
ASinCosf = Xmax; :
G070 L2; o
2o B
i Gg (0)= One - WgO);
Gexp(0)> = Gexp(0) - Onaint; " Og = Og/2 or Og = Og * 2 ™ -1 * s
Yy (0) = -Sqrt(Gg0));
-

.......................................................................
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Vexp(0) = Yaxp(0) + Onaint; " Yy s W2 or Yysyy* 2% {°
o))

Pg = C(C(P4 * 0Gg(0) + P3) % Gg(0) + P2) * Bg(0) + P1)> * Gg(0);
Gg =< Gg(O) + G3) * Gg(0) + Q2> * Gg<0> + Q1) * 6g(0) + QO;

Result = W(0) + Yy(0> * Pg / Qg;

L1:  IF Job = ArcSine;
BEGIN
Rasult = Result + RaCli);

IF Arg < 0.0;
Reasuit = -Result;
EMD
ELSE "ELSE Job = ArcCosing”
IF Arg < 0.0;
Result = Bb(li) + Result;
ELSE
Result = RaCli) - Result;

RSInCos = Result;
L2:  RETURN;

END
TERM

................................................
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Capt Jarnnifer Fried

HISTORY: This project sas undertaken as a thesis project for
partial fulfiliment of requirements for an NS degree
in Information Science from the Air Force Institute
of Technoiogy. Sponsoring organization is the RSD
Language Control Branch, Wright Patterson AFB,0h.

. »
* DATE: 19 ALY 1983 *
* UERSION: 1.0 *
* NAME: MathLib »
* MODULE NUMBER: 1.0 »
* DESCRIPTION: »
* This compoo! is required by any JOVIAL programr that needs to »
* raferenca any of the math functions written for floating-point *
* or fixed-point computations .
* PASSED URRIABLES: N/ .
* RETURNS: N/R »

> * MODULES CALLED: N/A : -
*  AUTHOR: Capt. Steven A. Hotchkiss and :
]
* »
» »
» »
» »
] -
] L]

STRAT
COMPOOL Mathl ib;

Lo REF PROC Exp Rent(Arg) F 39;
BEGIN
ITEM Arg F 39;
END
REF PROC RALog Rent(Arg) F 39,
BEBIN
ITEN Arg F  39;
END
REF PROC ALogl0 Rent(Rrg) F 39;
BEGIN
ITEN Arg F 39;
£
REF PROC Sqrt RENTGArg) F 39;
BEGIN
ITEN Arg F N;
500
REF PROC Sin RENT(Xx) A  1,30; R0
BEGIN .
ITEN xx A 1,20;
m ‘:-:‘:s:‘
REF PROC Cos  RENTCXx) A 1,30; A

T BEGIN
ITEM Xx A 1,30;
END
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REF PROC Tan
BEGIN
ITEM Xx

RENT(Xx)
1,30;

12, 18;
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39;
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39;
ARSI

ITEM Xx F
END

REF PROC ATanf RENT(Xx> F
BEGIN

TERN
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* DATE: 29 Rugust 1985 » ._.j
* UERSION: 1.0 » .
* NE: |oRefs . ;-::,-a
* MODULE NUMBER: 1.0 - e
* DESCRIPTION: * Y
» This Compool is necessary to reference routines that were * T
- nacessary for testing and performance evaluation of all math » S‘l.:
» functions developed for the 1750. » ;
* PRSSED URRIABLES: N/A i *-r
* RETURNS: N/A » T
* MODULES CALLED: N/R » s
* AUTHOR: Capt. Steven A. Hotchkiss ond . o
. Capt. Jannifer Fried .
* HISTORY: This project sas undertaken as a thesis project for  * =
» partial fulfiliment of requirements for on MS degres * (B
. in Information Scienca from the Air Force Institute * ]
» of Technology. Sponsoring organization is tha ASD » R
» Longuage Control Branch, Wright Patterson AFB,0h. * ~T
" " SR
STRART b
COMPOOL (oRefs;
g

The following |ITEMs are required to print a carriage return and o

‘ line feed on a terminal connected to a MIL-STD-1750 computer

DEF ITEM Corriaoge STATIC U 16 = 2573;
DEF ITEM CRLF STATIC C 2,
QUERLAY Carrioge: CRALF;

' The following referenced subroutine is eritten in 1750 Assembly |anguage fj»,‘l']
‘and is used to print chaorocter strings only. Noncharacter types will T
‘ have to be converted before calling this routine. Tha following DEFINE is 5 -
' recommsendad for all routines calling ObeSim: S
) DEFINE WRITE'STRINGCR) ' ‘Printc(HORDSIZEC(!AY,LOCCIAY)""; ‘
)
' An example of a typical call follows: R
' {
' ITEM Example C 2; T
' : f'.:z:
' HRITE 'STRING(Example); i
”» r“

1

N

REF PROC Printc RENT(Length, Message); ]
)

q
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BEGIN

ITEM Length U (BITSINWORD-1);
ITEM Hessage P;

EMD

The following refarenced routine is necessary for routines wishing
to corwert floating-point values to a character string

REF PROC FItToChar ¢Arg) C 20;
BEGIN
ITEN Arg F 39;
END

The following referenced routine is necessary for routines wishing
to corvert fixed-point values to a character string. The variable
IntOveriay sust be overlayad on top of a fixed-point variable and
BitsinFrac is an integer vaiue indicating tha nuaber of fractional
bits in the fixed-point value.

REF PROC FixToChar (IntOveriay, BitsinFrac) C 20;

BEGIN
ITEN IntOveriay § 31,
ITEM BitsinFrac U 8
END .
TERNM
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START

DATE: 29 August 1985
VERSION: 1.0

NAME : FixToChar
MODULE NUMBER: 1.0
DESCRIPTION:

This routine is used to cowert fixed-point values into
character representation. This routine was necessary for
testing ond perforeance evaluation of math routines developed
for the 1750
PASSED VARIABLES: IntOveriay - An Integer Variabla Overiayed on top
of a fixed-point valua
BitsinFrac - the mmber of fractional bits of

the fixed-point argusent

RETURNS : a 20 character representation of the argusent
CALLED: FitToChar
AUTHOR : Capt. Steven A. Hotchkiss and
Capt. Jenmnifer Friad
HISTORY: This project was undertoken as a thesis project for

partial fulfilisent of requiresents for an MS degree
in information Science from the Air Force Institute
of Technology. Sponsoring organization is the RSD
Language Control Branch, Wright Patterson AFB,0h.

REF PROC FltToChar (Arg) C 20;
BEGIN
ITEM Arg F 39;
ENO

* sirpeiaieiriesiesgsaieieainieini FixToChar Procedure Nessinsieiesiueaienprapenfenjesieriens

DEF PROC FixToChar (IntOveriay, BitsinFrac) C 20;

BEGIN

ITEM IntOveriay s 31;
ITEM BitsinFrac U B8;

TABLE Overliays <0> W 3;
BEGIN
ITEN Arg F 39 P0S(0,0);
ITEM ArgExp S 7 POS(8, 1);
EMD

Arg0> = (" F 39 *)( IntOverlay );
ArgExp(0) = ArgExp(0) = (* § ? *)( BitsinFrac );

FixToChar = Fi{ToChar<Arg<0>)
RETURN;

END

T R EEEEEEREERERRERREEREERENS
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* DATE: 29 Rugust 1965 * :
* UERSION: 1.0 » L
* NAME: F1tToChar * A
* MODULE NUMBER: 1.0 . o
* DESCRIPTION: * e
* This routine is used to corvert floating-point values into * oAt
hd character reprasentation. This routine mas necessary for * S
b testing and performonce svaiuation of math routines develioped * B
» for tha 1750 * RS
* PASSED UARIABLES: Arg - the valus to be converted » S
* RETURNS: a 20 character represantation of the argumsent »
* MODULES CALLED: nona * o
* AUTHOR: Capt. Steven A. Hotchkiss and » J
» Capt. Jennifer Fried * =
* HISTORY: This project was undertoken as a thesis project for » ‘ 1
hd partial fulfilisent of requiresents for oan NS dagree *
* in Information Science from the Rir Force Institute *
* of Technology. Sponsoring organization is the ASD * RO
b Language Control Branch, Wright Patterson AFB,0h. * e
- * DR
k-

START .
DEF PROC FitToChar (Arg) C 20;
IN -
BEG (]
DEFINE VYes “18'1'"; ]
DEFINE No “1B8'0'"~,; :
ITEN Arg F 39,
ITEM Froction F 39;
ITEN Temp F 39;
ITEM Result t 20,
ITEM Ix U 8
ITEM Iy U 8; e
ITEN ExpCnt U 8; N 4
ITEM NegExp B; -
ITEM CharVal U s;
ITEM Charfep c 1,

ITEN ZeroRep  STATIC C 1= '0°; ]
ITEN ZeroVal  STRTIC U §;
OVERLAY ZeroRep: Zerolal; S
CONSTANT ITEM Zero F 392 0.0 i
CONSTANT ITEM One F 39 = 1.0; o
COMSTANT ITEM TerFloat F 39 = 10.0; r
CONSTANT ITEM PtFiva F 39 = 0.5 -
CONSTANT ITEM PtOne F 39= 0.1 -
R

o

123 g




s
-
Ll
-
«
n
~
A
K

Result = * 0.0000000CO000CE+00" ;

IF Arg ¢ Zero;
BEGIN
Fraction = -frg;
BYTEC(Resuit,0,1) = ‘=",
END

ELSE
Froction = Arg,

IF Fraction ¢ PtOne;
NegExp = Yes,
ELSE
NegExp = No;

ExpCnt = 0;

WHILE (Fraction > One);
BEGIN
ExpCnt = ExpCnt + 1;
g::tion = Fraction / TernFloat;

IF (NegExp = Yas) AND ( Fraction <> Zero);
BEGIN
BYTE(Result, 17,1 = '=';

WHILE (Fraction < PiOne);
BEGIN
ExpCnt = ExpCnt + {;
Froction = Fraction * TenFloat;
END

ENO

ly =0,
WHILE ((Fraction <> Zaro) AND (ly ¢ 13));
BEGIN
Temp = Fraction * TenFloat;
IF ly = 12;
Temp = Temp + PtFive;
CharVal = (* U 8 *)( Tamp );

Froction = Temp ~ (* F 39 *)( CharVal );

CharVal = Charlal + ZeroVal,;
BYTEC(Rasul t, 1y+3, 1)=Cha'acp,
ly = |y + 1§,

END

CharVal = (% U 8 *)XExpCnt MOD 10) + Zerclal;

BYTE(Resul t, 19, 1) = Charfep;

Charial = (* U 8 *XBExpCnt / 10)

BYTE(Result, 18, 1) = Charfep;
FitToChar = Result;
RETURN;

END

.....................................
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TITLE HOLCPRINTC)
MODULE PRINTC

DATE: 4 September 1983 -
VERSION: 1.0
NAME : Printe
MOOULE NUMBER: 1.0 -
DESCRIPTION:

This module is cal led to print a character string onto

a console that is connected to a f1i(-Std-1730 computer
PASSED VARIABLES:

LENGTH.3 -~ this variable contains a count of the rumber

kol 2

. .
et e
NPT W DL Ny

AR

characters to print
MESSAGE_3 - this is a location pointer for the string to be >
printed -
- prints messages on user console PO
3 MODULES CALLED: -
[ AUTHOR Capt. Steven R. Hotchkiss and
. Capt. Jemnifer Fried
*‘ HISTORY: This project was undertaken as a thesis project for

partial fulfilisent of requiresents for an MS degree
in Information Science from tha Rir Force Institute
of Technoiogy. Sponsoring orgonization is the ASD
Language Control Branch, Hright Patterson AFB,Oh.

lf{l{fi*&*il*iiii*il*ii*il'*l'l

$ 4-SEP-83/16:09:29 §

PRINTOFF . DO NOT LIST METRS
» .
* START OF METR DEFINITIONS
]
DATRS META 3 . REPEATED PRESET META
LF¢0> EQU $
- LOooP 2, 1, NUMCGF =1
voip GF(_, 1), NORMA, __DATAS
GOTO TEST
- NORMA LABEL
F DATA OFC¢)
F TEST LOOPTEST
X MEND
- —DRATAS META 3
o — LOOP 1,1,6F¢_, 1)
DATA )
LOGPTEST
MEND
LENGTH 25,9999
.
SECTION METR 0 . CSECT METR
- LOOP 2,1,31
SCC(DL N®(_) CSECT
LOOPTEST
L
125 0




LOOP

LOOPTEST
MEND

* END OF META DEFINITIONS
*»

»

* BASE RED EQUATES
»

B12 EQU 12
B13 EQU 13
B4 EQU 14
B1S EQU 15
]
* CONOITION CODE EQUATES
]
NOP EQU 0
LT EQU i
Eq EQU 2
1E EQU 3
ot EQU 4
e EQU s
HE EQU 6
LY EQU 8
de e EQU 9

e £ 0
AE EQU "
LG6T EQuU 12
O EQU 13
s EQU 4
LN EQU 13
[
* END OF EQUATES
»

REG

SECTION

PRINT

DEF INE PRINTC
PSSORTAS EQU 3
PSSCONSS EQU 4
PSSCO0ES EQU 2

* NO BYREF/TYPE/ABSOLUTE DECLARATIONS

* LOCAL AUTOMATIC DATA *+& S|ZE (N WORDS — 2 DECIMAL : 2 HEX *»
* LOCAL AUTOMATIC DATA FOR PROC PRINTC

* STACK FRAME *** S|ZE IN WORDS — 2 DECIMAL : 2 HEX **=*

BK__003EF EQU HEX<0) . SIZE = 2
LENGTH.3 EQU HEX(0) . SIZE = 1
MESSAGE3 EQU HEX( 1) . SIZE = 1

* END OF LOCAL AUTOMATIC DECLARATIONS
* PSECT $DATA 1S EMPTY

? .
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R2 = NUMBER OF CHARACTERS IN STRING
R3 = LOCATION OF CHARACTER STRING

ORIGIN HEX<0)

EQU $
ORIGIN  HEX(0002)
AISP R2, 1 . ADJUST CHARACTER COUNT
SAA R2, 1 . 18T THO COMMANDS EQUIVALENT TO il
. R2 = ROUND(R2/2) R
BLE ;.a_nwz . BRANCH OUT |F ILLEGAL CHAR COUNT
EQu
X10 RS, RCS . READ CONSOLE STATUS s
TBR 1,RS . CHECK STRTUS BIT 1 | S
BEZ OUTPUT . IF OFF, LOOP BACK UNTIL CONSOLE READV e
L RS,0,R3 . GET NEXT TWO CHARACTERS OF MESSAGE 2
X10 RS,CO . PRINT BOTH CHARACTERS a
ad R3, 1 . POINT TO NEXT THO CHARACTERS i
S0J R2,0UTPUT . DECREMENT LOOP COUNT, GO BACK IF MORE td
EQU $ N
AISP R1S,2 L
POPH A2, A3
RS R1 ;
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* DATE: 10 October 1965 » b
» 10M: 1.0 » -z
* NAME: RefMat * Y
* MODULE NUMBER 1 » .
* DESCRIPTION: * o
» This routine is used to convart (TS LINK files into  * 4

. a format that can ba loaded into the SPERAY 1631 . :
. computer (1730 architecture). The ITS files are »

* ‘'.80° files and must be in tha 80 coluan record format * N

» descrribed in the EMAD ITS Load Module ICD (CORL #1003 * >

* contract $F33657-83-C-0244). Use of the comsand file * -
* LINKI?50.COM to link all compilied modules will insure * R
» that these records are of the right foraat. The format * >
» of tha SPERRY |ooder records are dafinad in Rppendix B * k-
3 b of its progrosmer reference marual. The bytes of all * o
- * binary data fields must ba swapped ¢(i.e. the high * .
. * order bits of a word are swapped with the low order 8) * i
| * The only type ITS records converted are binary and * A
s * end record types. It also ignores all protection * e
1 * indicators, and can not handle expanded memory jobs. * L
= * lhen all object files are copied into a single object *
- * for linking by the ITS LINKER, thea main procedure must * T
L * ba copied into the file first!!iliii! Otherwise, this * e
- * application will have no way of determining the point * e
- . that execution is to begin. The ‘end' record created *
P Y » by the ITS linker contains the lowest addrress of the * E:
: * load moduie, and this application assumes that the *
- » routine bagins at that point. The ITS file contains  * iy
* datafields that are in HEX character representation, * O
= " ond tha SPERRY 1631 expacts binary data fields; » =
- . therefore the |ITS data must also ba converted to » NG
- » binary » A
o » PASSED URRIRBLES: N/A . E
. * RETURNS: N/R » o
. * MODULES CALLED: Ge tHdr » ot
- » Readf »
»* Printf * o
* CinUp * o
* IntFil * '
» Wr i teRcd » _—

* AUTHOR: Capt. Steven A. Hotchkiss and * -
» Capt. Jennifer Fried by
* HISTORY: This project was undertaken as a thesis project for *
» partial fulfilisent of requiresents for an MS degree * S
* in Information Science from the Rir Force Institute *
* of Technology. Sponsoring organization is the ASD * L
* Language Control Branch, Wright Patterson AFB,0h. » ot
B » »
START P

ICOMPOOL ¢ loData’);
ICOMPOOL. ¢*loCalls’);
1COMPOOL. ¢ ‘RfMtCpI"); S




PROGRAM RefMat;

BEGIN

ChkSums = 4B8°0000° ;
FirstPass = True;
LdPt = -1{;

Eof = Faise;

Buff = Q;
BufPtr(0) = {;
BufPtr(1) = 1;

" Initialize 10 Files *

IntFil;
* Gat Header Info for Looder File "
GatHdr,;
WHILE NOT Eof,;
BEGIN
* Read tha first 80 column record *
Readf(: | tsRcd,Eof);

* Put Looder Info into Contiguous Mamory Locations °
HdsinRcd = Cnti(0)> - Asciio;

AddrC(0) = Addr(0),

Wd1C<0) = Wd1¢0);

Hd2C0)> = Wd2¢0);

Wd3CC0)> = Wd3(0);

Wd4C<0)> = Ld4<0);

WASCC0> = Wd3(0);

Wd6C(0> = Wd6<0);

Wd7CC0) = Wd7<0);

“ Initialize tha Output Buffers "
FOR i1x: 1 BY 1 WHILE Ix¢33;
CharToBin¢Ix) = 0;

FOR Ix: O BY 1 MHILE 1x<63;
OutBuff(ix) = 0;

* Corwert Char To Bin and Pack it "
FOR ix: 1 BY 1 UHILE Ix<=32;
BEGIN
IF CAsciiC<=CharToBinCix)) AND (CharToBin(Ix)<=Ascii9);
CharToBinCix) = CharToBinCix) - AsciiO;
ELSE
IF ¢AsciiR«=CharToBin(Ix)) AND (CharToBin(ix)<=fAsciiF);
CharToBin(Ix) = CharToBin(ix) - Asciif + 10;
Hal fBytecix) = Nibbles(ix);
END

IF Typ¢0) = * °,;
BEGIN “This is a binary record”

IF BufPtr(Buff) + Hdsinficd <=61 AND LdPT = Laddr(0);
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BEGIN " Oid Record and still room for more data fields * A

“ Flip Flop the position of each byte of a 1750A word * SLLe
FOR Ix: 0 BY 1 WHILE Ix<Hds|nRed; -
BEGIN e
BufByteO(BufPtr(Buff)*ix) = Fialdl ix+1); SN
BufByte 1<BUPr(BUff Mix) = FialdH(Ix+1);
END

" Point to where info from naxt ITS 80 coluan record *
" is to ba placed into this loader record "
BufPtr(Buff) = BufPtr(Buff) + iisinfcd;

* Update load point so tha next ITS record con be checked to “
" sen If |t belongs in this loader record "
LdPt = LdPt + HdsInfcd;

IF BufPtr(Buff) = 61;

"j '“. ".‘ 'l.
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BEGIN “ Loader Record is full and needs to be written * r

HdsinBuffer = 60;
AedTypl = RsciiB; =
A =

ELSE
BECIN ~ 0ld record and not enough room = or new record "

IF LdPt = Laddr(0);
BEGIN " Soma loader record, but not ancugh room for all "
" data fields in ITS record "

EER R o
L PR

2 i A
L . . s _a_vw N ": .
A'L'A.‘;.J.', .,Qéi-‘i AL

® Seap Bytes of words going into loader record
FOR Ix: O BY 1 WHILE BufPtr(Buffi+ix < 61;
BEGIN
BufByteO(BufPtr(Buff >+ix) = FieldL{Ix+1);
BufByte 1CBUfPtr(Buff)+ix) = FieldH(Ix+1);
LdPt = LdPt + (;

. RN
. i \!' PR
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END
" erite the full record out "
HdsinBuffer = 60;
AcdTyp! = AsciiB; N
Hri teRed; =
* Sat the load point for this nes loader record *
LdRd(0) = LdPt; -
" Seap bytes of tha other ITS data fields and place thea into * N
" racord. If tha naxt |ITS record doesn’'t hava the load point * T
" computed here, it should be the first entries for another " ny
" loader record - S
FOR 1y: Ix BY 1 WHILE Iy < UdsInRed; »
BEGIN -3
BufByte0(BufPtrBuffi+ly) = FialdLCiy+1); o
BufByte1CBufPtr(Buff)+iy) = FieldHCiy+1);
LdPt = LdPt + 1; e
- - . ‘3I~ ........... i

.........




END
END "Sama record not enogh room”
ELSE
BEGIN “ this is the start of a new loader record "

IF NOT FirstPass;
BEGIN

IF BufPtr(Buff) < 1;
BEOIN “tha last record didn‘'t gat filled up, so it °
“ hasn't bean written yat. Tha routine -
* UriteRed sets BufPtr to | bafore exit °

RedTypl = Asci ib;
Hds InBuf fer = BufPtr(Buff) -1;
HriteRed;
END
END “ end not first pass "

FirstPass = Faise;

" Sat the load point for this loodar record *
LdAd(0> = Laddr(0);

" Swap bytas of ITS data fields going intc |oader record *
FOR Ix: O BY 1 WHILE Ix < WdsinRed;

BEGIN

BufBytel(ix+1) = FieldL(Ix+1);

BufBytaiCix+1) = FialdH(Ix+1);

END

BufPtr(Buff) = Udsinfcd + 1,
LdPt = Laddr(0) + lksinRed,

LS N
el v ST
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END " end new record " - _‘:

N

END “end of old record not enough room — or new record " oy

END “end of this is a binary record” ' 1
- o

ELSE Ty
BEGIN “this is an execution address record " S

IF Typ<0) = ‘E’;
BEGIN ]
RedTypl = 8261; “blank E* -

OutBuff<0) = Laddr(0>,

OutBuff(1> = 30; ~ ascii record saperator "
Hri teRed;

END

RN A
A R SN |
ISOACIC
s
e Ty
PP -

END “end execution address record * s 4
END “end while loop " Ty
" Write end of file loader record " o

..........................................................................

....................................



RedTypl = 8262;

" blank F "

OutBuFF(0) = 30; " ascii record seperator “
“ Clean up Files used "
ClinUp;
END
TERN
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» »
* DATE: 10 October 1983 »
* UERSION: 1.0 »
* NAME: WriteRed *
* MODULE NUMBER. ? *
* DESCRIPTION: *
» This routine is called by RefMlat to do 10 stuff that *
* needs to be dona throughout the main procadure. Three *
» types of SPERRY 1631 {oader records are written: *
* Binary ,Execution, and End of file. If the record type *
* is a binary record, this routine computes a checksua *
» for it and tcks it on to the end of the record. Than *
b the record type is written out followed by tha binary *
* record. {f the record type is an execution record or *
* an end of file record, the record typa is written out *
» fol lowed by tha record. The variable 'Buff’ is a »
» global variable that points to the record to be »
» witten. »
* PASSED UARIABLES: HNone *
* RETURNS: Nothing *
* MODULES CALLED: Printf — a FORTRAN 10 routine *
* AUTHOR: Capt. Steven A. Hotchkiss and *
* Capt. Jannifer Fried »
* HISTORY: This project was undertaken as a thesis project for *
» partial fulfiliment of requirements for an MS -
» in Information Science from the Rir Force Institute .
» of Technology. Sponsoring organization is the ASD "

'Y ) : Language Control Branch, Hright Patterson AFB,0h. :

START

{COMPOOL.¢ ‘RfMLCpl * );

1COMPOOL. ¢ loData’);

REF PROC Printf(RedTyp,Buffer);
ILINKAGE FORTRAN;
BEGIN
ITEN RedTyp S 15;
ITEM Buffer C 126;
END

DEF PROC WriteRcd;
BEGIN

LoopCnt = WdsinBuffaer;

If RedTyp! = AsciiB;
BEGIN

ChkSum = 48°0000°;
OutBuff<0) = LdAd(0);
ChkSum = ChkSum XOR OutBuffB(0);

OutBuff<1) = LidsinBuffer,
ChkSum = ChkSum XOR OutBuffB(1);

..........................................




O FOR Ix: 1 BY 1 WHILE Ix <= LoopCnt;
7 BEGIN
OUTBUFFCIx+1) = BufidCIx);

» ChkSum = ChkSum XOR OutBuffB(ix+1);
~ END

- OutBuffBC|Ix+1) = ChkSum;

. Printf(RcdTypl , OutF1d); ‘

END
ELSE S

PrintfCRedTyp! , OutF 1d); 13

BufPir(Buff) = 1;
Buff = ABSC1-Buff);
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! * DATE: 10 October 1985 *
| " lon: 1.0 .
' * NRfE: loCal ls »
* MODULE NUMBER: 9 *
. * DESCRIPTION: »
. i This compoo! is required for RefMat to reference its *
: * associated FORTRAN 10 routines *
I * PASSED UARIABLES: N/M -
* RETURNS: N/R *
* MODULES CALLED: N/A *
* AUTHOR: Capt. Steven A, Hotchkiss and b
* Capt. Jemnifer Fried »
* HISTORY: This project was undertaken as a thesis project for *
[ . partial fulfiliment of requirements for an NS *
by in Information Scienca from the Air Force Institute *
» of Technology. Sponsoring organization is the RSD *
» Language Control Branch, Wright Patterson AFB,0h. *
* *
’ START
COMPOOL (oCalls;
' REF PROC UriteRcd;
: BEGIN
MY B0
REF PROC GetHdr:
ILINKARGE FORTRAN;
BEGIN
END
_l REF PROC Readf(:|tsRed,Eof);
. ILINKRGE FORTRAN;
BEGIN
ITEM {tsRed C 80;
ITEM Eof B 1I;
) END
)
REF PROC Printf<(RcdTyp, Buffer);
ILINKRGE FORTRAN;
BEGIN
ITEM RedTyp S 15;
ITEM Buffer C 126,
; END
REF PROC Cinlp;
ILINKRGE FORTRAN;
BEGIN
END
i REF PROC IntFii;
: . ILINKAGE FORTRAN; REN
g BEGIN =
: END B
: TERN S
. N
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N * DATE: 10 October 1985 » :
( *  UERSION: 1.0 * b
‘ * NAME: toData »
* MODULE NUMBER: 8 -
. * DESCRIPTION: » RSN
: » This compool definas all data required for the JOVIAL * A
" * routina RafMat and its associated FORTRAN (0 routines * s
[ * PASSED UARIABLES: N/A » " j
. * RETURNS: N/A * no
* MODULES CALLED: N/R L] - .%
*  AUTHOR: Capt. Stevan A. Hotchkiss and " el
d Capt. Jennifer Fried * L
* HISTORY: This project was undertcken as a thesis project for d S
i . partial fulfiliment of requiremants for on NS degree * - -
* in Information Science from the Air Force institutea  * b
. * of Technology. Sponsoring organization is the ASD »*
: »* Language Control Branch, Wright Patterson AFB,0h. * .
, - M ,

START :
COMPOOL. |oData;

DEF ITEM Infil c
DEF TEM Outfil C 10; _

XY DEF ITEM Filnam C
. DEF ITEM Header C 60, L.

DEF TRBLE |tsTable<0> W 20; L

; BEGIN o
R ITEN Addr POSC 16,00); i
y ITEM Ty POSC16,01);
| ITEN Cnt POS(24,01); P
ITEN Cntl POS(24,01);

ITEM Hd1 POS(08, 03); ]

ITEM Hd2 POSC 16, 05);

ITEN Hd3 POS(24,07);

: I TEM Lid4 POS(00, 10); _
* ITEN WS POS(08, 125 .
\ I TEN 1B POSC 16, 145 B
o

}

t ]

O0OO0O0O000VMOOO
LR R R N PR

ITEM Wad? POS(24, 16);
END

OEF ITEM itsRed C 80;

OVERLAY |tsRed: |tsTable;

J DEF TRBLE OutRed €0:62) T 16 N;
i BEGIN
ITEM OutBuff S 15 P0S(0,0); e
ITEM OutBuffB B 16 PO0S<0,0); o]
- DEF ITEM OutFid C 126; O
i OVERLAY OutRcd: OutFid; f"-%

DEF ITEM Eof B 1 el
OEF ITEM RedTypl & 1S ]

.................................
....................




OEF |TEM RedTyp c 2
OVERLAY RedTypl: RedTyp;

4

OVERLAY Infil, OutFil, Filnam, Header,

Pl S et e s gt A Jin st ol e e i g

e e T

RS

ItsRed, OutfFld, Eof, RedTyp;
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> * DATE: 10 October 1985 » S
* UERSION: 1.0 » i
*  NAME: RfMtCpi »
*  MODULE NUMBER: 10 »
* DESCRIPTION: » A
» This compool contains all the variables and tables » "
» that are usead to unpack ITS |inker records, packs them * ~
» and convertis the HEX choracters to binary data fields, * :
* and then places them into q SPERRY 1831 loader record * "
. » format » R
f * PRASSED UARIABLES: N/A » ;
* RETURNS: N/A » T
* MODULES CALLED: N/A . o
* AUTHOR: Copt. Steven A. Hotchkiss and » -
| » Capt. Jennifer Fried * i, d
. * HISTORY: This project was undertoken as o thesis project for »
* partial fulfiliment of requirements for an MS degree * <
- in Information Science from the Rir Force Institute  * L
»* of Technology. Sponsoring organization is the ASD » "
* Language Control Branch, Wright Patterson AFB,0h. * ;—'_.
" "
PN — b

START

COMPOOL RfMACP! ;

ITEM ChkSum
ITEM FirstPass

B

B

ITEM LdPt S
{TEM Buff U 8;

U

U

S

S

LRE T TR

ITEM Ix
ITEM |y
ITEN WdsinRed 15;
ITEM LoopCnt 15;
ITEM WdsinBuffer S 15;

8,

RS e A A
4

P
. a e 0
A
et

CEELELELL R

ITEM Zero STATIC C 1= '0';
ITEM Ascii0 STATIC S 7; =S
OVERLRY Zero: AsciiO; —

"

ITEN Nina STATIC C 1= '9’; s
ITEN Ascii® STATIC § 7; -
OVERLAY Nine: Asciil;

Lk

DEF ITEM AR STATIC C 1= 'A'; P
DEF ITEM AsciiA STATIC S 7; T
OUERLAY AA: Asciif; RS

DEF ITEM FF STATIC C 1= 'F'; N
DEF ITEM RsciiF STATIC S 7?; S
OVERLAY FF: AsciiF; o
DEF ITEM B8 STATIC C 2= ' B'; L
DEF ITEM fsciiB STATIC S 1S; =
OVERLAY BB: AsciiB; o
B

"y

N

o
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Ao DEF TABLE LoadPoint ¢0); .
BEGIN :
ITEMLdAd S 1S; .-
END =
DEF TRBLE BufStuf <0:1); o
BEGIN '
ITEM BuffPtr s 7;
»,': m
DEF TRBLE PackedRcd <0) W 8;
.. BEGIN
- ITEM AddrC C 4 PO0S¢0,0);
ITEM WdIC C 4 POSCO,1);
: ITEM Wd2C C 4 P0S¢0,2);
f ITEM Wd3C € 4 POS(0,3);
1 ITEM Wa4C C 4 POSCO,4);
ITEM WASC C 4 POSCO,5);
- ITEM WdBC C 4 P0S(0,6);
¥ ITEM Hd?C C 4 POSCO,7?);
END

DEF TABLE CharConvert (1:32) T 8 W;
BEGIN
ITEM CharToBin S 7 P0SC0,0);
ITEM Nibbles S 3 POS(4,0),

u END

OVERLAY PackedRcd: CharConvert;

DEF TABLE HexBuf €(1:32> T 4 U;
BEGIN
ITEM HalfByte S 3 POSCO,0);
END

DEF TRBLE Pokits <0:7> T 16 N,
BEGIN
ITEM Laddr S 13 POSC0,0);
ENO

DEF TRBLE BinFields €0:7) T 16 K;
BEGIN
ITEM Field § 15 P0SCO,0);
ITEN Fieldd S 7 POSCO,0);
ITEM Fiald. § 7 POS(8,0);
END

OVERLAY HexBuf,ix: Pakits: BinFialds;

ROA

DEF TRBLE DatFields (0> M 1; T
BEGIN N

ITEM BufByted § 7 POSCO,0); -

ITEN BufBytel S 7 POSCS.0): —~

ITEN Bufiid S 15 P0SC0.0); o

Em ° \_»'.

TERM
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c c
C DATE: 10 Octobar 1985 c
c 10N: 1.0 c
C NAME: IntFil c
C MODULE NUMBER: ] ¢
C DESCRIPTION: c
c This routine is callied by tha JWIAL routine called €
c RefHat. |ts purpose is to prompt the usar for the c
c name of a fila that was created by an IT8 1ink, c
c proapt the user for the name of a file that the c
c refornatted ITS file is to ba writtan to, and then c
c opens both files. The input fiia must ba a “.90" file C
c and the output file is a “.DAT" fila. c
C PASSED VARIABLES: Nona c
C RETURNS: Nothing c
C OGLOBAL VARIABLES: Al variabies used are global, and havae been c
c defined in tha common (COMPOOL> called ioData c
C MODULES CALLED: Nona c
C AUTHOR: Capt. Staven A. Hotchkiss ond ¢
c Capt. Jannifer Fried c
C HISTORY: This project was undertoken as a thesis project for c
c partiai fuifiiiment of requiresants for on IS c
c in Information Scienca from the Air Force Institute c
c of Technoliogy. Sponsoring organization is the ASD c
c Language Controi Branch, Wright Patterson AFB,0h. c
c c
Ll

Subroutine IntFil

IMPLICIT INTEGER (R-2)

CHARACTER*S Fiinom
CHARACTER™10  Infil, Outfil

WRITEC*,*)’ Enter File Nome (Max 6 Characters) '
RERD(*, 10)F i Inam
10 FORMAT(RG)

| = INDEX(Filnam,'.') ~ 1
IF ¢1.LE.0)> THEN
| = INDEXCFilnom,' *) = 1
IF ¢I.LE.O) THEN
=6
ENDIF
ENDIF

Infil = Filnam(1:15//°.50°
Outfil = Fiinam¢1:13//* .DRT
HRITEC®,*) Input File = ', Infil, 'Output file = *,0utfil

OPENCUNIT = 2, NAME = Infii, TYPE = 'OLD’, FORM = 'FORMATTED')
OPENCUNIT = 3, NAME = QutFil, TYPE = 'NEW’,
1FORN = 'UNFORMATTED )

END

..................................................

......................
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c
c
c
c
[
c
c
C
c
c
c
c
c
c
c
c
c
c
c
c
c

»

: 10 October 1983
VERSION: 1.0
NAME Ce tHdr
MODULE NUMBER: 2
DESCRIPTION:
This routine parforas 10 for a JWIAL routine called
RefMat. It requestis a user inpu i
header that will ba placed in a looder filae.
PRSSED UARIABLES: HNone
RETURNS : Nothing
OLOBAL VARIABLES: All variables used are giobal, and are dafined in
the cosmon (COMPOOL) col led loData
MODULES CALLED: Nona
AUTHOR: Capt. Steven A. Hotchkiss and
Capt. Jennifer Fried
HISTORY: This project was undertoken as a thesis project for
partial fulfil!ment of requiremants for an MS degree
in Information Scienca from the Air Force Institute
of Technology. Sponsoring organization is the ASD
Language Control Branch, Wright Patterson AFB,0h.

Subroutina GatHdr
IMPLICIT INTEGER (A-2)

Spacer! = 0
HRITE(*,*)' Enter Optional 1 Line Header Text °
Read(*, 10 Header

10 FORMAT(RE0>

HRITE(*, * Header

HRITEC3)' D'//Header//RS
00 20 I=42,64

WRITE(3 YSpacer 1

20 CONT INUE

END

g:':

.l'

PR AT
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c c
C DRTE: 10 October 1985 c
c ION: 1.0 c
C NAE: Printf c
C MODULE NUMBER: 4 c
C DESCRIPTION: c
c This routine is called by the JWIAL routina called c
c Rafilat. It is used to write SPERRY loader records out C
€ to a “.DAT" file. The name of tha fil being writtan is C
c stored in tha global variable Outfil which was sat in C
c tha routine called IntFil c
C PASSED VARIABLES: Nona c
C RETURNS: Nothing c
C GLOBAL VARIABLES: AIll variables used are giobal, ond are dafined in c
c the coason (COMPOOL) cal led loData c
C MODULES CALLED: None c
C AUTHOR: Capt. Steven A. Hotchkiss and c
c Capt. Jamnifer Fried c
C HISTORY: This project was undertaken as a thesis project for c
c partial fulfilisent of requirements for an MS degree C
c in Information Scienca from the Rir Force Institute c
c of Technology. Sponsoring organization is the ASD c
g Language Control Branch, Wright Patterson AFB,0h. [

c
Ll

Subroutine Printf(RedTyp, OutFid)

IMPLICIT INTEGER (R-2)
CHARACTER*2 RedTyp
INTEGER*2 OQutFid(1:63)

HRITEC3RedTyp, (QutFldCl), | = 1,63)
WRITEC®,*)'lirite next record’

END
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DATE: 10 October 1983 Lo

VERSI0N: 1.0 k.

NAME : Readf R0

MODULE NUMBER: 3 oA

DESCRIPTION: 7}'_{:

This routine is called by the JWIAL routine called s

Raftlat. (ts is used to read 90 coluan records created P

c

c

c

c

c

c

c

c

by the iTS linker. The noma of tha fil being read is C
stored in tha giobal variable Infil which was sat in C
tha routine called (ntFil. This file isa ".80" fila C
PASSED UARIABLES: Nona c
c

c

c

c

c

c

c

c

€

c

c

c

RETURNS : Nothing
GLOBAL UARIABLES: Al variables used are giocbal, and are defined in
the coamon (COMPOOL) callied loData

MODULES CALLED: Nona

AUTHOR : Capt. Staven A. Hotchkiss and
Capt. Jennifer Fried

HISTORY: This project was undertoken as a thesis project for
portial fulfiiisent of requiremsents for an MS degree
in Information Science from the Air Force Institute
of Technology. Sponsoring organization is the ASD
Language Control Branch, Wright Patterson AFB,Oh.

DOOOOODOOO0000O00O0O000O00O000O0000

P
.

Subroutine Readf(itsRcd, Eof)

F e T,
PR S
W " Bt e te e e
R e e
a a . FRAT T R I N

IMPLICIT INTEGER ¢A=2) RO

\.:_:.
CHARACTER*80 | tsRcd )
LOGICAL*4 Eof Ay’

=

Eof = .FALSE.

READC2, 10, END = 20) | tshcd
FORMATC(RBO )
HRITEC*, %) | tsfed S
00TO 20 e
Eof = .TRUE. b
CONT INUE _
END o

4-“ n-
e
S
b
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c
c
c
c
c
c
c
c
€
c
c
c
c
c
[
c
c
c
c
c

DATE: 10 October 1983
VERS ION: 1.0

NAME : CinUp

MODULE NUMBER: L]

DESCRIPTION:

N N Lol PR ¥ T )
e I DIt
A e TR

" "'
2¢

This routine is called by the routine RefMat to close

tha files it used for 10
PASSED VARIABLES: None
RETURNS : Nothing
MODULES CALLED: None
OLOBAL VARIABLES: Ailvariables used are giobal, and are defined in
the cosson (COMPOOL) called ioData

AUTHOR : Capt. Staven R. Hotchkiss and
. Capt. Jamnifer Fried
HISTORY: This project was undertaken as a thesis project for

partial fulfiliment of requiresants for an MS

in information Science from tha Air Force institute
of Technology. Sponsoring organization is the ASD
Longuage Control Branch, Wright Patterson AFB,0h.

Subroutine Cinlp
IMPLICIT INTEGER (A-2Z)

CLOSECUNIT = 2)
CLOSECUNIT = 3)

END

.........
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ASN1730 — Assesble a 1730 source module
RSN 1730 file

Create Asseabier input file Ul that designates Ml i-Std-1730R as tha target
rather than the altarnata 1750R targat

$ CREATE 'P1°.UI
ASSEMBLE TRRCET=i11730R
$ TV 'PI°UI

$!

$ ABSION ‘P1°.UI
$ ABSION 'P1°.8I
$ ASSION 'P1°.0BJ
$ ABSION 'P1°.90
$ ASSION ‘P1°.LO
:?NMLMJMHJHM ol
$ SET VERIFY

L 2 2 2 2 2 2 2 2 4

!
!
!
|
| file = input sourcea nome of sodule file.S!
!
I
|
'

INPUT COIMANDS FILE CINPUT)
ASSEMBELY SOURCE FILE CINPUT)
QUTPUT

IC QUTPUT

ISTING OUTPUT

IBRARY INPUT

688ec
3

2
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e
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1730 — JOVIAL COMPILE FOR MIL-STD-1730R TARCET C'.-:'JJ
1750 fila l.filatypa]l (options) 2y

e.g., JOV1I?730 TEST! SAC  /SYNTRX_DNLY/STATISTICS
®JOVI?30 TEST2 /MACHINE_CODE/CROSS

Nota: If the filetype is JOV, options aay ba typed as 2nd parameter.
If a filetypa is supplied, it must ba preceded by a “." as shown.

! Rasuiting cbject module has type .0BJ
SET VERIFY
JOVIAL ‘'P1°°P2’ /TRROET=1730R/NOINFO/CROSS /RSSEN'P3*

2 2 2 2 2 2 21 2 2 2 2 2 2 4
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If',l‘_'j_j
T-L-:?-f
$ 1 LINKITIO — Link one or more 750N targat object modules. ;l:'-;?:i
&, | '_:.'..:.l
: | LINKI?S0 flie ;—-‘—‘
! L
$! file = cbject file (containing one or more cbject modules)
$1 create cbject file by first delating all .obj files for 3
$! COMPOOLs that don’'t contain awy DEFs. Then use the
: 1 following coamands to create tha object file
| _
$ | COPY *.08J fila.0 .
: | RENAIE file.0 file.0BJ o=
! Ol
$ | 0BJ files created by the cospiler and the assesbler can be copied to the ey
$ | same 0BJ filae, but tha URX will giva an incompatible files sarning. Ignore o]
: | the warning, the copy is sade amyway T
" L
- : | Create Linker input file "UI" b oo
: SET VERIFY
{ RN
$ CRERTE 'P1°.UI
.LINK DATA,LIST,DEBUG, |NPUTS A
ALLOCATE LOCATION=1000 MODULES . i 1
Iilm e
{ SO
$ ASSION ‘P1' .Ul ut | LINKER CONTROL. ¢INPUT) ]
g $ ASSION 'P1'.0BJ 00 { OBJECT MODULE(S) CINPUT) PR
N ) $ RSSION 'P1’'.S0 80 { LORD MODULE <OUTPUT)
. e $ ASSION ‘'P1°.LO Lo ! LINKER LIST FILE <OUTPUT)
- $ ASSION L IB_JOVIAL_1730A ol | LIBRARY OBUECT FILE CINPUT)
!
ITSLINK | AUN 1730R Linker...reads logic device Ul
{ Output on SO and LO

DELETE 'P1'.UI;®
SET NOVERIFY o

( 2 2.2 2 2 22 2 2 2 /4
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LOGIN.CoM This cosmand procedure is invoked with each login.
and sy ba changed to tailor your enwirorsent.

Set standard aliases. Nota that ssveral UNIX-|ike aliases are sat up.

' 2 2 1 4 1 2 1 4

i

453 887Z33GEF"8EB"
i
£

: ! Lika UNIX ps command
:mm SHOM DEFAULT t Lika UNIX pud comsand

;== SHOM TERMINAL
:om SHOU USERS | Lika UNIX who command -
:mm SHON QUELE SLAMSQUEUE /ALL
:mm SET TERMINAL /NIDTH=60
8132 rom SET TERMINAL MIOTH=132
JOVIPI0 == QJOV1730
LINK1730: == QLINK1730
SIM1730 == @SIN1730
ASN1750 == QASN 1730
UMLOCK == QUNPROTECT

End user dafined keyins.
DEFINE JOVIAL LIBAARY FOR AUTOMATIC SEARCHING FOR UAX TRARGET
ASSIGN JOUL IBY: JOUL IBV.0LE LNKSL |BRARY

The following dafines the 1750R support tools pseudo-commands:

INKSOA :== LINKITS
10X :== $TOOLS:RAID

LOGIN.CON

2 2 X 2 2-1-2 2 2 2 2. 2 2 2-°2 2 2 2 2 2 T 2 2 2 2 2 21 2 4 2 4
= o v v e o e -

Q*Q-Q
§ ——
2

exIT

.
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== This procadure is the nain driver for tha Tchabyshef econoaization
-— of a poiynomial.

ECONOM I ZED_POLYNOIIAL : FLORT_VECTOR <0..MRAX_DEGREE) :=
<0. .MAC_DEGREE = 0.0);
-—The is the resuiting econcaized coafficients to tha poiynoaial 203
SUM: FLOAT.VECTOR <O..MAX_DEGREE) := ¢(0..MAX_DEGREE => 0.0); »-1
-=This vaiue is a tesporary work area for the sua of tha coluans
— of the work matrix
WORK_MATRIX: FLOATMATRIX ¢O0..MAX_DEGREE, 0..MAX_DEGREE) :=
(0. .WAX_DEGREE => <0..MAX_DEGREE => 0.0));
—Teaporary work area for foraing tha economized coefficients N
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procacdure DISPLAY.VECTOR (PRINT_VECTOR: In VECTOR) is
-—The sole purpose of this routine is to display an integer vactor

packaga INT_.IO |s new INTEDER.IO (integer);
usa INT.I0;

begin —Display Vactor.
for | in O..DEGREE_OF _POLYNONIAL |oop
put <1);
put ¢* *);
put (PRINT.LUECTOR CI));
nas_line;
end loop;
end DISPLAY_VECTOR;




. T T——r —per o S ——
SR At Bt b el i By e Sl et A B M A S A S AR S A ARl AR A WAL Mial S S0 A b W A - ) kiR <

B e i s

RNy procedure DISPLAY_FLOAT_VECTOR (PRINT_VECTOR: in FLORTVECTOR) is
—Tha sola purposa of this routine is to display a floating point vector

package INT.IO is new INTEGER.IO (intager);
- use INT.I0; )

packaga FLT.I0 is new FLOAT.IO (float);

use FLT.I0;

bagin —Display Float Vactor.

K for | in O..DEGREE.OF .POLYMOMIAL (ocop
. put C1);

S put ¢ ™);

@ put (PRINTVECTOR ({));

- nan_l ina;
end loop;
end DISPLAY_FLOAT_VECTOR;
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0
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procedure DISPLAY MATRIX (PRINTMRTRIX: in MATRIX) is
—Tha sole purposa of this routine is to dispiay an integer matrix

packaga INT.I0 is new INTEGER_IO Cinteger);
use INT_IO;

package FLT.IO0 is new FLORT.IO <(float);
usa FLT.IO0;

bagin —Dispiay Matrix.
for | in 0..DEOREE_OF_POLYNOMIA. 100p
put <1);
put <" °);
for J in 0. .DEGREE_OF_POLYNOMIAL loocp
put (PRINTRTRIX €1,Jd));
put ¢* *;
and loop;
new_l ina;
end loop;
and DISPLAV_MATRIX;
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IINOP procedure DISPLAY_FLORTIATRIX (PRINTUIWTRIX: In FLORTIRTRIX) is
N —Tha sole purpose of this routine is to dispiay a floating point matrix

package INT.IO is naw INTEGER.IO (intager);
X use INT.IO;

. pockage FLT.I0 is new FLOAT.IO (float);
use FLT.I0;

begin —Display Float Motrix.

for | in O..DEGREE.OF_POLYNONIAL loop ™
put <1); o
put < *); S
for J in 0. .DEGREE.OF _POLYMOMIAL loop
put (PRINTUATRIX (t,d0);
put ¢* *); i

end loop; 4
~ nas_! ine; ]
- end loop; e
and DISPLAY_FLORT_MATRIX;
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bagin —Tchabyshaf Economization.

INPUT_COEFF ICIENTS;

put (“input Coafficients®);

naw.l ine;

DISPLAV_FLOAT_VECTOR <COEFFICIENTS);

COMPUTE_TCHEBYSHEF _POLYNOMIAL ;

naw_i ina;

put ("Tchabyshaf Polynoaial”);

nan.| ina;

DISPLAY_MATRIX (TCHEBVOHEF_POLYNONIALS);

COMPUTE_POUERS. .OF _.TCHEBVSHEF ;

nas.| ine;

put ("Powars of Tchebyshef®);

neu.| ine;

DISPLAY_FLOATJINTRIX <POMERS.OF .TCHEBYSHEF );

—Ganarote the work matrix used in the final calcuiations of tha economized
— polynomial. Again the matrix is lower triangular.
for | in O..DEGREE.OF POLYNOMIAL locop

for J in 0..) loop

HORKCHATRIX <) ,J) := float(MULTIPLIER (1)) ® POLUERS._OF _.TCHEBVSHEF ¢I,J)
& COEFFICIENTS ¢1);

and loop;

ond loop;

—ficcumuiate the sus of the work satrix coluans
for { in Q. .DEGREE.OF..POLYNOMIAL loop
for J in O..DEOREE.OF _POLYNORIAL loop
SUNCJ)Y = SUMCJS) + (HORILMATRIXCT,¥));
end loop;
end loop,;

—Parfora tha final additions and mulitiplications to fora the result.
for | in O..(DEGREE_OF_POLYNOIMIAL - 1) loop
for J in0..1 loop
ECONOM I ZED_POLYNOM AL <J) := ECOMOMIZED_POLYNOMIAL ¢J) +
f1oat(TCHEBYSHEF _POLYNOMIALS ¢1,J)) & 8UK <I);
end loop;
end loop;

new.! ine;

put ("Econocaizad Polynosiai®);

naw_l ine;

DISPLAY_FLOAT_VECTOR <ECONOMIZED_POLYNOMIAL >;

end TCHEBVSHEF _ECONON | 2AT ION;
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- — DATE: Decesber 1, 1005 v
-- UERSION: 1.0 sl
— NWES: TCHEBVSHEF_PACKAOE k.
- STRING_TO.INT i
- {NPUT_COEFF ICIENTS . _ N
-— COMPUTETCHEBYSHEF .POLYNOM I AL o~
-— COMPUTE_POMERS_OF _.TCHEBYSHEF Y
) - DISPLAY_VECTOR ROy
-— DISPLAY_IMATRIX F.
- — DESCRIPTIONS: Provided with each routine. KAt
R — PRSSED UARIABLES: Tha input to this systes is the description of e
[ - the poiynomial to ba economized.
¢ — FRETURNS: The resuit of processing is tha coafficients of the e
; -— econonized polynomial . e
== CALLING MODULES: TCHEBYSHEF_ECONONIZATION a2
. —~ AUTHOR: Capt Jennifer Fried and k.-
g - Capt Steven Hotchkiss AR
. - HISTORY: Original version, Dec 1, 1983 e
with TEXT_I0; use TEXT_I0; L:
package TCHEBYSHEF_PACKRCE |is G
B
- This package receivas tha coafficients of a polynoaial that is to be .
- economized, computes its Tchebyshag polynomial, and the powars of R
— Tchabyshef satrix. L:.
B
=—Unconstrained type deciarations
type MATRIX is array C(integer range <>, integar rangs <) of intager;
-—Hatrix of integer vaiuas, used to contain the Tchabyshef polynoaials
typa FLOART_MATRIX is array Cintager ranga <>, integer range <>) of float, —
—fatrix of floating point values, used to contain tha powers of |
== Tchabyshaf e
type VECTOR is array (integer ranga <>) of integer; N
—actor of integer values, used to contain tha sultiplier of the matrix
type FLORT_VECTOR is array (intager range ¢<>) of float; NN
==Uactor of floating point vaiues, used to contain tho coafficients of R

== {tha polynomial

-—lariable declarations
MALDIGIT: integer := 19;
—Tha acxisum number of digits paraitted in a mmber Is nine. L
== This valua represants the saximm input string length for tso muabers e
-— and a slash, /"
MAX.DECREE: integer := Q; | N
-~The saxisus value of the largest exponent of tha polynoaial s
DEGREE..OF _POLYNOMIAL: integer :» O;
—Tha actual vaiua of the (argest exponant as input by the user
COEFFICIENTS: FLOAT.JECTOR <O..MAX_DEOREE) := <0..MAX_DEGREE => 0.0),
-=Contains a coafficiant for each degree of tha poiynomial that sas
-~ gpacified by tha user [ 2
MATIPLIER: VECTOR <O..MAX_DEGREE) := <0..MAX_DECREE => 0), =
—-This vector contains tha reciprocal of tha valuas contained on
== tha diagonal of tha Tchabyshef poiynomial matrix. R
=~ Used in generating tha econcaized polynomial.
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TCHEBYSHEF _POLYNOMIALS: MATRIX <0..MAX_DEGREE, 0..MAX_DEGREE) := DA
<0. .MAX_DECREE => <0..MAX_DEGREE => 0)); W
—The matrix obtainad shen using the Tchebyshef foraula. -
POMERS..OF _TCHEBYSHEF : FLORTMTRIX (0. .M _DEOREE, 0. .MAX_DEGREE) :=
¢0. .MAX_DEOREE => (0..MAX_DECGREE => 0.0));
-=Tha natrix formed shan applying the second step of the economization
— algorithe

function STRING.TOLINT (S: string) return integer;
=—This function is used to corwart the input coafficient string into an
- integer valua that equatas to tha mmerator and the danceinator.

--Thasa procedures perfora the functions specifled by this package
procedure |NPUT_COEFFICIENTS;
-=0at tha input coafficients for the poiynoaial
procedure COMPUTE_TCHEBYSHEF _POLYNONIAL ; n
—Oararate the Tchabyshaf poiynomial satrix .
COMPUTE_POMERS_OF _.TCHEBVSHEF ; :

—Ganerate the powers of Tchabyshef matrix
end TCHEBYSHEF _PACKACE;
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package body TCHEBYSHEF_PACKACE is

function STRING.TOLINT (8: string) return integer is
—=8tring to integer equivalent corwersion.

CHAR : choracter; —individual maber in eoch
== placehoider of the input string.
DIGIT : integar; -—Iindividual mmber in each placeholider

- of the output integar.
MATIPLIER : integer :» 1; —Tens valus of the integer

== pointer.
FINAL_RESULT . Intagar :» 0; —Output intagar being ganeratad.
POSITION : integer := 8'last; —Pointer into input string

=— <{(moves right to left).
bagin —S8tring to integar corwersion.

—S8tarting from tha end of the input string, process each
- successive character until all characters have been corwerted.
while POSITION >= S'first loop

==Cet one character digit from the input string.
CHAR := S(POSITION);

=if this is a valid character digit representation, corvart the
= character Into its maeric represantation, and aultiply It by
= |ts tens valua.
If CHAR in °0°..'9' then

0i6GIT := character 'pos(CHAR) -~ character’'pos<‘0’);

DIGIT := DIGIT * MLTIPLIER;

~{t tha final waiue wil! ba tha sost negative mmber,
designate it as tha most negative mmber and stop
processing. Tha reason this is dona is to adjust for the
probiea that the absolute valus of the sost negotive muaber
is 1 digit larger than tha most positive muaber and will Tl
- reasult in an out-of-bound condition. L
if integer’last = (FINRL_RESILT - 1) + DIGIT than E__‘

FIMAL_RESILT := integer'first; A

POSITION := 8'first;
else

-~Othersise, this is not tha sost negative mmber. Thus, ]
=— oadd the current digit to the rest of those found, and o]
= incresant the tens valua to the naxt farger rumber. L_,_{
FINAL_RESULT :=» FINAL_RESULT + DIGIT; e
MATIPLIER := MALTIPLIER * 10;

end If;
==If the original input was negativa, then nagate the results. e
aisif CHAR = '=' then P
FINAL_RESULT := -FINALRESILT; 500
—Adjust the pointer into the input string to point to tha next )
P

........
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- character 0 the left.
POSITION := POSITION - 1;
and loop;

—Corwersion finished, return tha ganerated integar.
return FINAL_RESWLT;
end STRING_TO_INT,;
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INPUT_COEFFICIENTS is
=—This procedure cbtains tha inforaation dbout the input poliyncaial and
- cornverts tha coafficients into floating point forsat

package INT_I0 is new INTEGER_IOC intager);
use INT.I0;

POLERS: integer := 3,
—=indicates shather all powers, only the even, or only thw odd powers
= gra presant in the input polynomial. Originally sat ‘o out of
— bounds condition to varify propar input.

STEPS: integer :» 2;

—incresent valua for entering tha coefficiants of tha poiynoaial
INITIAL: integer := O; 4
—gtarting valus for tha valus of tha exponant
COUNTER: integar,; }

—Loop counter through tha input string T
NUMERATOR: integer; }
]

[

-tumarator of the coefficient
DENOMINATOR: integer;

=~Danoninator of the coefficient
CONVERT_STRING: string ¢1..MRXDIGIT); NN

—S8tring representation of the coafficient
LAST_DIGIT: intager; <

-—fictual length of the input string RN

-

‘;_. bagin —Input Coafficiants.
o ~=Obtain the valua of the largest exponent of tha polyncaial. OG0
i = |t sust be betwesn 2 and 9. . b
Xy while DEGREE_OF _POLYNOMIAL ¢ 2 or DEGREE.OF._POLYNOMIAL > MAX_DEGREE |oop o
put ("Enter the degree of polyncaial desired. (inima Is 2): *); b
W get (DEGREE_OF_POLYNOMIAL); ]
new-| ine; H
end loop;
=~0btain an indicator for tha type of tha poiynomial’s exponents AR
while POMERS < O or POMERS > 2 joop o
put (“Entar 0 for coafficients for ALL powers of X°); S
nee_| ine; S
put ("Enter 1 for coafficients for 00D powers of X*); b
naw..| ine; Sl
put ("Enter 2 for coafficients for EVEN powars of X°);
new..| ine; T
get (POLERS); R
end loop; A
b
—S8at the initial and incremental values for cbtaining the polynoaial
— coafficients. Saves tise.
STEPS := §; i
elsif POUERS = 1 then ]
INITIAL := 1; s

s end if; =3
K




....................................

~—Obtain the coafficiants for each element of tha poiynomial
put C"Entar the coefficients of the saries baing wxpanded by >;
neu.! ine;

put ¢ entering a fraction, |.e. ~<2/3 or +2/3 or 2/3%);

nen.} ina; e
put ("Coafficient for Xe= “); o
nes.line;

—Loop all elesents

while INITIAL <w DEGREE_OF_POLYNOMIAL locop
put CINITIARL);
put (" = *);
gat_il ine (CONVERT_STRING,LAST.DIOIT);
new_l ine;
COUNTER := {;

e «

—8tep through tha input string looking for tha */° which separates
~ tha ruserator from the denominator. [f one doss not exist, or (¢
~ appears In eithar tha first or the last position in the string,
- then tha coafficient aust bs resntered.
whi e COUNTER <= LAST.DIOIT loop
if (CONVERT.STRING (COUNTER) = '/') and
C(COUNTER /= COMVERT.STRING'first and
COUNTER /= LAST.DIGIT) then

daciare j.:«‘_.'.]
—~Once the “/" has baan iocated and Is In a proper iocation A
- gbtain the mmerator string and the danominator string. SN
MMERATOR.STRING: string rencees B |

CONVERT_STRING (COMVERT_STRINO' first..(COUNTER -~ 1)), F 73
DENONINATOR_STRING: string renames -
COMVERT_STRING <CCOUNTER + 1). LAST.DIGIT);

bagin —8lock : g
~—Corwart tha two strings into integars S
MUMERATOR := STRING.TOLINT (NUMERRTOR_STRING); o]
DENOMINRTOR := STRING_TO..INT <DENOMINATOR_STRING); [_H

v
N

-—{f tha dancainator is a valid vaiua, then ganarate the fioating
== point vaius for tha coafficient
I|f DENOMINATOR /= 0 then
COEFFICIENTS CINITIAL) := float(NUMERATOR) / fioat(DENOMINATOR);
-|ncresant to the naxt eliement in the poiynomial.
INITIRL := INITIAL + STEPS;
end if,

-—=|ndicate that this coefficient has bean found and converted
COUMTER := LAST.DIGIT;
end; -—Block

i
1
ond if; L“?
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—Point to the naxt character in tha input string ]
COUNTER := COUNTER + {;

end loop; ]
and loop;
end |NPUT_COEFF ICIENTS; . e
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COMPUTE_TCHEBVSHEF _POLYNONIAL is
—Ganarate the matrix of tha Tchabyshef polynosial. Tha procedure uses
-~ yalues of tha satrix elemsents that hova already been found.
== Tha algorithe is recursive in that respect.

bagin ~—Compute Tchebyshaf Polynomial.

—The first two elements sust be initialized to allow the following
- passes to use thea.

TCHEBYSHEF .POLYNONMIALS <0,0) := {;

TCHEBYSHEF _POLYMONIALS ¢1,1) = §;

through the loser trianguiar portion of tha matrix
== and calculate the Tchatyshef polynoaial values.

for | in 2. .M _DECREE [oop
for J in0..| - 2 loop
TCHEBVSHEF .POLYNONIALS (I,J) :=
o | TCHEBYSHEF _POLYNONMIALS (!,J) - TCHEBYSHEF_POLYNOHIALS ¢I -~ 2,J);
00p;

for J In0..] - 1 loop L
TCHEBYSHEF _POLYNOMIALS ¢I,J + 1) :=
TCHEBYSHEF .POLYNONIALS CI,J ¢+ 1) + T

(2 * TCHEBVSHEF.POLYNOMIALS ¢I - 1,J)); ";-",-‘
end loop;
._! end loop; £

end COMPUTE_TCHEBYSHEF _POLYNOMIAL.; ~—
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procadure COMPUTE_POMERS.OF _.TCHEBVSHEF is
—Conputa the matrix for tha posars of Tchebyshef

COEFFICIENT_L(ST: FLOAT_LECTOR <0..MAX_DEOREE) :=
<0. .MAX_DEOREE => 0.0);

INDEX: Iintager := DEGREE_OF_POLYNOMIAL,

STEP: integer;

POINTER: Integer;

bagin —Compute Powars of Tchabyshaf. }
whiie INDEX >= 0 loop

MALTIPLIER CINDEX) := 1 / TCHEBYSHEF_POLYNOMIALS CINDEX, |NDEX); ]
STEP := INDEX;

whila STEP >= 0 loop .

COEFFICIENT_LIST (STEP) := float(TCHEBVSHEF_POLYNOMIALS CINDEX,STEP)); 3 -

STEP := STEP - 1; sy

“ 'm, ?“'..'A_"

Y

4

_TCHEBYSHEF CINDEX, INDEX) := 1.0;

STEP := INDEX - 2; . S

while STEP »= 0 Ioop =r

POMERS_OF _TCHEBYSHEF ¢ INDEX, STEP) := L

- (COEFFICIENT_LIST (STEP)) Gy

/ float(TCHEBYSHEF _POLYNONIALS (STEP,STEP)); L

POINTER := STEP; DK

while POINTER >= 0 l(oop 3]

COEFFICIENT_LIST CPOINTER) := R

Y COEFF ICIENT.LIST CPOINTER) + POMERS_OF _TCHEBYSHEF (INDEX,STEP) 2

: * ({oat(TCHEBYSHEF_POLYNONIALS (STEP,POINTER)); b4

POINTER := POINTER - 2; NS

end loop; {

STEP := STEP - 2; ]

end loop J

INDEX := INDEX - 1; "

end io0p; -
end COMPUTE.POMERS_OF _TCHEBYSHEF ; ~
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— Date: 28 Noveaber 1983

- Yarsion: 1.0

- Nome: Apprax.Dr iver

- Hodula Number: 1.0

~= Description: This routine loops until a user is done approximating
-— whichavar function he desires

-= Passad Variables: None

- Raturns: None

- Olcbals Used: Choice

— Modules Called: MENY

- Author: Capt. Staven A. Hotchkiss and

-_— Capt. Jannifer Fried

- History: ODsveloped as a thesis and ADA project

with OLOBAL_DATRABASE; usa OLOBAL_DATABASE ;
wi th APPROXIMATORS; use RAPPROX |MATORS;
with TEXT.I0; usa TEXT.I0;
procadure APPROX_DRIVER |is

NM: integer := 0;

DEN: integar := 1;

CHOICE, KEY : character;

uiT : character := '7?‘;

package INT_IO is new INTEGER.10CINTEGER);
usa INT_IO;

pockage FLT_I0 is new FLOAT.10CLONG_FLOAT);
use FLT.I0;

begin
sat_page_iength(24);

- |nitial ize data points
COMPUTETCHEBYSHEV;

- |{at tha user opproxisate as sany functions as neaded
while (CHOICE /= QUIT) foop

- salect function to approxisata
= by giving users a sanu of options

] MENUCCHOICED;
— use tha built functions to make @ more accurate approximation
COMPUTE_PADE.APPROX I MAT 1ONS; P
¥ If CHOICE /= QUIT then R
3 for | in 0..M loop
If CCNMM,1) /= 0.0 or C(Dan,|) /= 0.0 then -
putc ase*); P
put(ld,; “'1‘
P e 1 T
pUt(CCNUM, 1); ]
putc® bes®); e
A
[
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AN putcl); o
by put(® em> °); =

-~

put(CCDEN, | )),;
nes.line;

R ~

b

ond If; e

and loop; o]
and If; N

"
)

put(“Hit amy key to continua®™);
oatlKEY);
new..l ine;

);

end loop;
end APPROX_DRIVER;
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; — Date: 28 Novesber 1983

i - Uarsion: 1.0

! — Nome: OLOBAL_DRTRBASE
= Module Mumbar: 2.0
= Description: Contains all global variables
— Passad Uariables: N/R
— Raturns: N/R

. - Globals Used: ALL

I — Modules Called: N/

: — RAuthor: Capt. Staven A. Hotchkiss and
— Capt. Jarnifer Fried
== History: Conplated for Theasis and ADA project

I package OLOBAL.DATABRSE is

) type LONG_FLOAT is digits 9; ‘_-;‘f.:'.;
v type VECTOR is array(integar rangs 0..25) of LONGFLOAT; .
- type MATRIX is arrayCinteger range 0..25, integar range 0..25) of RIS
[ LONG_FLOAT; k.
- type PADE_MATRIX Is array (integer rangs 0..23, integer range 0..1, SRR
N intager range 0..23) of LONG_FLORT; R
I & T: MATRIX; - Matrix containing the coefficients of
= diffarent powers of Tchebyshev poiynoaiails
fA: PROELARTRIX; - Used to contain tha series of PADE approx
- R¢S,N or D,0)
- 8 (s tha series number
-, ~—NoD N - 0 for tha numerator
: D - 1 for tha dancainator
' -c-eo.fﬂclmt for a powar of X for tha
| - particular series’ mmerator or
- - denomsinator
g D: VECTOR; == Error values of PRDE approximations
g n: lntogr == Powar of tha nuserator polynomial
. K: intager; = Powar of the denominator polynomial
’- N: integer; == Power of tha initial power saries ' i
. MRCLAURIN: VECTOR; - Contains tha coefficients for the b
~— different powars of "X" for tha power 1
~— saries opansion of a function Z‘_-Eizl‘_;;
; COEFF ICIENT: string(1..33); == Used to contain user entered coefficients o]
: -— Qa power searies expansion L
. EPS: LONOFLOAT; ~— Convargent epsilon P
C: MATRIX; - Final rational approximation T
N
] .
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- DATE:

- Uarsion:

- Nome:

== Module Nuaber:
-~ Description:

~= Passed Varidbles:
-~ Raturns:

-~ Globals Used:

-= Modules Called:
-~ Author:

: History:

end COMMONPROCS;

LN

28 November 1905
1.0
COMON_PROCS

3.0

This package contains procedures that are invoked

throughout the systea
N/A

NA

N/

N/A

Capt. Staven R. Hotchkiss and

Capt. Jennifer Fried

Developed as a thesis and ADA project

with OLOBAL_DATRABASE; use OLOBAL_DATRBASE;
package COMMON_PROCS is

procedure POUER_PROMPT(NUM, DEN: out integer; Epsilon: out LONG_FLOAT);
procedure GET_COEFF ICIENTSCSTRUCTURE: in character; POHER: in integer);
function PRODUCT(FROM, TO, BY: integer) return LONG.FLOAT,

function FRACTORIAL (MUMBER: Integer) return LONG_FLOAT;
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with TEXT.I0; use TEXT.10;
package body COMMON.PROCS is

package INT.I0 is new INTEGER..IOCinteger);
use INT.I0;

package FLT.I0 is new FLOAT..10CLONG_FLOAT);
usa FLT.I0;

procedure POLER_PROIPT(NN, DEN: out integer; Epsilon: out LOMG.FLOAT) is
bagin
set_page_length(24);
loop
haw_poge;
put(“Enter tha power of tha nuserator(sust ba integer) *);

gat(NR1);
nen.l ine;

. w v v e
Ll 4

LI )

.-.ﬂ.:.' AL

»l e

v
»
¢
.
.

put("Entar the powar of the dencainator(must ba integer) );
gat(DEN);
nav_l ine;

put(“Entar tha epsilion of corwergance.®);

put("This sust ba a real fraction and entered as 0.x");
put("llhare x is any string of digits up to 9 in langth *);
gat<EPSILON);

nee.l ine;

axit;
and loop;
axcaption -
shan dataarror =
put_] ina("irval id Entry. Resnter data”);

end POHER_PROIPT;
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procedure GET_COEFF ICIENTS(STRUCTURE: in character; POMER: in integer) is

COEFF : LONG_FLORT := 0.0;
FRON, TO, BY : integer;

procedure GET.POMER(NUIMBER: in Intager; COEFF: out LOMGFLOAT) is

LAST.SHAP : integar := COEFFICIENT' last-1;
MAERATOR : boolean := TRLE;

OUT.COEFF : LONG.FLOAT;

CHAR_PTR : integer;

MUM, DEN : string(1..13);
INPUT_ERROR : exception; S

procedure COMPUTE_REAL_COEFF(MM, DEN: in string; SR
COEFF: out LONG.FLORT) is

CHAR_PTR: integer = NUN'first,;
NUMERATOR: LONG_FLORT := 0.0;
DENOMINATOR, SION: LONGFLOAT := 1.0;

begin — COMPUTE_RERL_COEFF

if (NUNCCHRR_PTR) = *+°) then
CHAR_PTR := CHAR.PTR + 1,

elsif (NUMCCHAR_PTR) = *~') then .
SION := -SION; o,
CHAR_PTR := CHARLPTR + 1, ha

end if; ]

ehile ((NM(CHRR.PTR) /= ' ‘') and (CHRR.PTR <= NUM'last)) loop o
MUMERATOR := MIERRTOR * 10,0 + -
LONO_FLOAT (character ' pos(MR(CHAR.PTR)) -
character ‘pos(°‘0°));
and loop;

CHARPTR := DEN'first; 0
if (DENCCHARLPTR) = ‘+') then L
CHARLPTR ;= CHARPTR.+ 1; b
aisif (DENCCHAR.PTR) = '=*) then -
SION := -8I1ON;
CHAR_PTR := CHARPTR + 1;
and If;

whila (COENCCHAR.PTR) /= * ‘') and (CHAR.PTR <= DEN'iast)) loop -
NUERATOR := MAERATOR * 10.0 +
LONG.FLOAT {character ' pos(DENCCHAR_PTR)) -
character'pos(‘0°));
end loop,;

COEFF := NUMERATOR/DENOMINATOR®S|ON;
end COMPUTE_REAL_COEFF;
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begin — GET_POLER
nes_page;

loop
= proapt tha user o
put(“Enter the cosfficiants for x**°); o
put(NABER); el
(" == °);
get(COEFF ICIENT);

-= pock and seperate
for | in COEFFICIENT 'rangs loop
if C'0° <= COEFFICIENT¢I > and COEFFICIENTCI) <= ‘'9') or
COEFFICIENTCI> = ‘~' or COEFFICIENTCI) = *+' or
COEFFICIENTCI> = /' or COEFFICIENTCI)> = * * than

if COEFFICIENTCI) = */° then
CHAR_PTR := DEN'first;
NUERATOR := FALSE;
elsif COEFFICIENTCI) = '+’ or COEFFICIENT(I) = ‘~‘ or
<'0* <= COEFFICIENTCI> and COEFFICIENT(1) <= ‘'9°)
than
if MUMERATOR then
| NUMCCHAR_PTR) := COEFFICIENT(I);
eisa
DENCCHAR_PTR) := COEFFICIENT(I),
end If,
CHARPTR := CHARPTR + §;
end If;
eise
raisa |INPUT_ERROR;
end if;
end loop;

exit;
end loop;

COMPUTE_REAL_COEFF(MUN, DEN, OUT_COEFF);
COEFF := OUT_COEFF;

put(OUT_COEFF),
new_line;
axception
whan INPUT_ERROR => put.|ine("Input Error. Reenter value.®);
neu_lina;
end GET.POMER;
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begin — GET.COEFFICIENTS
set_page_iength(24);
nes._page,

"l
put_lineCEnter the coefficients for each"); ~¥
put_l inaC"power of tha ‘X' in fractional fors."); <)
put_lina("If a sign is entered, [t aust ba tha "); Y
put_!ina("first character. No bianks are allowed.”); 'y
put.l ina(“Tha max aljowabie siza is 9 digits par”); A
put_! ina¢"rumber.*); Y
neu_| ine; Py
put_lina(“Sample entries: 1/2 , +1/2 , or -1/2°); O
neu.! ine; e

TO := POMER; E_
case STRUCTURE is

whan ‘1’ => FRON := O; .
By = {; .
shen '2' => FRON :» 0; T
By :=2; v
shan '3’ = FROM := {;
By = 2;
when others=> FROM := O; N
By :={§; -

.
case;

while (FROW <= TO) loop o
GET_POMERCFROM, COEFF); _
MACLAUR INCFRON) := COEFF;
FRON := FRON + BY; ,-:‘:-:‘

end loop; ]

end GET.COEFF ICIENTS; | t._j
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function PRODUCTCFROM, TO, BY: integer) return LONGFLORT is

RESULT: LOMGFLOAT := 1.0;
LOOP.TEST: Integer := FRON;

bagin

whila (LOOP_TEST <= TO) loop
AESULT := RESULT * LONG_FLOAT(LOOP_TEST);
LOOP_TEST := LOOP.TEST + BV,

end loop;

return(RESULT);

end PRODUCT;
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function FACTORIAL CNUMBER: integer) return LONG_FLOAT is IS
RESULT: LONG_FLOAT := 1.0; :
begin R

3 for | in 2..MWBER loop oy
: RESULT := RESULT * LONG_FLOATC); vy
. end loop; o
returnCRESILT),
end FACTORIAL;
end COMMON_PROCS;
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== Date: 28 Novesbar 1985

- Varsion: 1.0

- Noma: FUNCT | ONPACKROE

= Hodula Nusber: 4.0

-~ Dascription: This package contains moduies that are cailled to either
-— compute a predafined power series expansion of a function
- or allow o0 users to enter their own

- Passed Variables: N/R

- Raturns: N/A

= Olobals Used: GLOBAL_DATRBABE

== tlodules Cal led: Nona

== futhor: Capt. Steven A. Hotchkiss and

- Capt. Jennifer Fried

-— History: Davelopad as a thesis and ADR project

package FUNCT |ON_PACKROE |s
procedure SIN_SERIES;
procedure TAN_SERIES;
procedure ASIN_SERIES;
procedure ATAN_SERIES;
procedure EXP_SERIES;
procedure BUILD_SERIES;

end FUNCT | ON_PACKAGE ;
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procedure SIN.SERIES Is
N: integer;

begin

-= gat tha powers of tha mmerator and denominator polynomiais.
— Also prospt the usar for a coovergant epsilion.
POMER_PROMPT(M, K EPS);

== Computa the powar of the NMaclowrin series. It is the sus of the power
- of tha mmerator, denominator, and the vaiue two
N=sN+K+2

- Computa tha initial opproximating poliynomial
for | in0..25 loop

MACLAURINCI) := 0.0;
end loop;

< for | in 1..<CN#1)/2) loop
MACLAURINCI*2-1) := —1.0%| FACTORIALC2*1-1);
end loop;

Qe and SIN_SERIES;
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procecure TRNLSERIES is
N: integer;

begin

-~ gat tha powers of the numerator and denceinator poiynomials.
-~ fiso proapt the user for a corwargant epsiion.
POUER_PROMPT(N, K, EPS);

~ Compute tha posar of the taciourin series. it is the sua of the power
. '-‘- of"tha naerator, dencainator, and the valua two
¥ mHeK+2;

~ Compute the initial approximating polynoaial
a for | in0..25 loop
MACLALURING! ) := 0.0;
end loop;

MACLAURINC1) := 1.0;
for | in 1..((N*1)/2) loop

MACLAURINC2#1+1) := PRODUCT(2, 2%1, 2) /
FACTORIALC2®1+1);

and loop;
end TAN_SERIES;
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prooadure ASIN_SERIES is
N: integer;

begin
-— gat tha powars of the nuaerator and danominator poiynomials.

- Aiso proapt the user for a corwargant epsiion.
POMER_PROMPT{N K, EPS);

== Computa tha power of tha Maciourin series. It is the sum of the powar
- of the numerator, danominator, and the valus two
N:=H+K+2

;. == Computa the initial approxisating polynomial
i for | In0..23 loop

MACLALRINCI) := 0.0;
L end (oOp;

= for | In 1..CCN1)/2) loop

- MACLAURING [#2-1) := PRODUCTCT, (C1-2292+1),2) /
3 PRODUCT(2, ¢ |#2-2),2) *

b LONG_FLOATC I#2-1);

b end loop;

end ASIN_SERIES;
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procedure ATANSERIES is
N: integer;

bagin
-= gat the powars of the nusarator and denominator poiynomials.

- Also prospt the user for o corveargant epsilon.
POMER_PROMPT(N, K, EPS);

‘.‘ ': ..’y‘ e »...I ‘--."l'
*e'. 2y [

-= Computa the power of tha Moclourin series. It is the sua of the power ,
— of the numerator, dencainator, and the valua teo e
== Compute the initial approximating poiynomial -
for | In0..23 loop <
MACLARINGI ) := 0.0; it

end (oop;
for | in 1..(N+1)/2) loop

HACLAURINC2%*(=1) = =1 0%(|-1)/FRCTORIAL(2%I~1);
end loop,

end ATANSERIES;
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procedure BUILDSERIES is :‘_:
N 1 intager; o
STRUCTURE : character; -

bagin
set_page_length(24);

- gat tha powers of the rumarator and danominalor polynoaials.
— fiso prompt the user for a corvergant epsiion.
POLER_PROIPT(N, K, EPS);

— Coaputa the power of tha Maciaurin saries. |t is the sum of the powar
-— of the mmerator, dancainator, and the vaiue two X
":-"*K’z; 2.

o,

- y ovor v e -
N "W‘[‘, P )
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- Computs the Initial approximating polynomsial
for | in0..25 loop
MACLAURINGI ) := 0.0;

and loop; X

:;‘A-
= Prompt the usar for the structure of the polynomial i
nes.page; -

loop
put_lina("Enter 1 if all powers of X"); -
put_lina("Entar 2 If only even powers of X"); Fe
put("Enter 3 If only odd posers of X = *); L
gat(STRUCTURE);
nas.l ina;

if *1° > STRUCTURE or STRUCTURE >'3’ then -
put_! ine{"Bad Entry. Try again.”);
aise L

OET_COEFF ICI|ENTSC(STRUCTURE, N); o

ond If; e
it L1; e
end loop L1i; L
end BUILD_SERIES;
)
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procedure EXP_SERIES |s b

N: integer; atadt

bagin N
— gat the powars of Um mmerator and danominator poiynosials. :;:\
- filso proapt tha user for a corwargant epsiion. NN
POLER_PROMPT(N, X, EPS); i
== Coaputa the power of thwe faciowrin series. it is the sum of the power
- of tha mmerator, dencainator, and the valua teo ‘
N:sHe+Ke2 ey
DA
— Cospute the initial approximating polynoaial e
for | In0..23 foop t:.:-"

MACLAURINL) := 0.0; p
end loop; L.,"

for | in0..N loop .
MACLAURINGI) := 1.0 / mmm.m; S
end loop; ey

end EXP_SERIES;
end FUNCT | ON_PACKRGE ; e

de
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—Data: 28 November 1965
— Uersion: 1.0
- Nama: APPROX LMATORS
= Modula Mumber: S.0
- Dascription: This package inciudas procedures that compute
- approxinations (o user saiected functions
- Passed Uariablas: N
= Raturns: NA
= Olcbols Used: OLOBAL_DATABASE
= Modules Called: N/
= Ruthor: Capt. Staven R. Hotchkiss and
— Capt Jamni fer Fried :
- History: Developed as a thesis and ADA project

package APPROXIMATORS is
procedure COMPUTE_TCHEBYSHEV;
procadure MENU(CHOICE: out character); borvt
procadure CONPUTE_PADE_APPROX {MAT (ONS; N
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ol th GLOBAL_DRTABRSE ; use GLOBAL_DATRBRGE;
with FUNCTION.PACKACE; use FUNCTION.PACKAGE;
wlth TEXT.I0; use TEXT.I0;

package body APPROXIMATORS is

package FLT.I10 is new FLOAT_IOCLONO.FLOAT); use FLT.IO;
proen.ro COIPUTE_TCHEBYSHEV I

bagin
— build the global table “T" containing tha coafficients for
— euch of a series of Tchabyshev poiynoaiais

T¢0,0) :» 1.0;
T¢1,1) := 1.0;
- 1¢2,0) := =1.0;
7¢€2,2) := 2.0;

for | in 3..23 loop
for J in 0..23 loocp
TC1,J) = TC1,d) = T(1=2,d);
and loop;
for J In 0..24 loop
TC,Je1) = T, Je1) ¢ 2.0 * WCi-1,4);
end loop;
and loop;

end COMPUTE_TCHEBVSHEV,;
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N procedure MENUCCHDICE: out character) is

OUT_CHOICE: character;
BAD.CHOICE: excaption;

bagin
sat_pagea.length(24);
- cjear screen and print menu

nan.page,
put.l ina¢"Choosa function to be approxisated®);
nan_l ine;

put_lina("Enter 1 for sin®);

putLline("Entar 2 for tan®);

put.l ine("Enter 3 for arcsin®); .
putlina("Entear 4 for arctan®™);

put_linal"Entar S for eo@");

put_iina(“Entar 8 for user dafined function®);

put_line("Entar 7 to quit™);

loop

for [ In MACLAURIN'rangs loop
MACLAURINGI) :=» 0.0;
and loop;

."_-, nee.l ine;
put( == °);
oat<OUT._CHOICE);

CHOICE := OUVT_CHOICE;
case OQUT_CHOICE is

whan ‘1°' => S|N_SERIES;
shan '2' => TAN.SERIES;
shan ‘3’ => ABIN.SERIES;
shan ‘4’ = ATAN_SERIES;
whan 'S’ = EXP_SERIES;
whan ‘6" => BUILD_SERIES;
whan
when

? W il S
others => raise BRD.CHOICE; 2
put_! inaC(®inval id entry. Try again®);
1
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procadure CONPUTE-PADE.APPROXIMATIONS |s

: Intager;

! integer = O;

! Integar :w {;
LONGFLORT;

. WATRIX;
: VECTOR:

5385

begin

— this procadure corwarts tha initial approxisating polynoaiel
== (the Maclaurin poser series) Into a rational approxisation
-— clear cut this PRDE approxisation’s mmerator
— and danceinator poiynoaials
for SERIES in 0..23 loop
for NUMLDEN In 0..1 loop
for COEFFICIENT in O0..25 loop
RCSERIES, MUM_DEN, COEFF ICIENT) := 0.0;
end loop;
and loop;
end loop;

for | in0..M loop — loop for ail powars of tha mumarator

for J in 0..K loop — loop for all powers of the dancainator

if <l >a J) than
- bulid a sork matrix to solive sisul taneous equations
€0 := 1.0;
NJRX = | ¢+ J;

for 8 In0..CMAX - | - 1) loop
for N1 in 0..J loop
HORKCS+1,N1) = MACLAURINCabs(NLIMRX ~ 8 = N1));
If (Mt = 0) than
8¢(8+1) := <HACLAURINCabs(N.MRX - 8§ - N1));
and if;
end loop;
end loop;

-— Solva sisul taneous equations for danominator coefficiants
for N1 in 1..J loop
If CHORKC(N1,M1) = 0.0) then
SETUP:

for X2 in 1..J loop
If CHORK(M2,M1)/= 0.0) than
TEP := B(N2);
B(N2) := BCND);
BCNT) = TEMP;
for 43 in 1..J loop
TP :» HORK(N2,13);
HORK(N2,M3) := HORKCNT,N3);
HORKCNY,N3) := TEINP;
and loop;
axit SETUP;
end If,;
end loop SETUP;
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end if;

’ TENP := HORKCNY, N1);

if TB® /= 0.0 then
BCN1) = BCN1Y/TENP;

K- else

' KNY1) := 0.0;

end If;

for N2 in 1..J loop
if TB® /= 0.0 then
| HORKCNT, N2) = LORKCNT, N2)/TENP;
else
HORK(N1,M2) := 0.0;
end If;
end loop;

for M2 in V..J loop
if (N1 /= N2) then
TEMP := <ORK(M2,N1),;
for N3 in 1..J loop
HORK(N2,M3) := HORKC(N2,M3) + HORK(N1,N3) * TEMP,
end loop;
- B(N2) := B(N2) + BC(N1) * TEIP;
- and if;
and loop;

end laop;
.-. — use danoainator coefficients to compute the mmerator
- coafficients, and buiid the series of PADE approxisations
for N1 In O0..1 loop
for N2 in 0..Mt loop ’
RCI+J, NN, N1> ;= RCISJ, MM, NT) + B(N2) * MACLAURINCN1-12)/

B<0);
end loop;
end loop;
for N1 in reverse 0..J loop
RCI+J,0EN,N1> := B(N1)/BCO);
BCN1)> = B(N1) /7 BCOD;
end loop;

— Compute the D's that are used to computa Cla,k)
— Oiwe1) = SINILe0 to J Claciaur iniajs1=L 8CL)]
DCivie1) = 0.0;
for L in 0..J loop

DCIage1) :m DCIogt1) ¢ MACLAURINCI+J*1=L) & BCL);
end loop;

end If;
and loop;
and loop;

PRI R R

end COMPUTE_PADE_APPROXIMATIONS;
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procedure COPUTELIK is
A: integar := 0;
B: integar = {;
LAMDA: VECTOR;

bagin

‘.--l,f of
LA

== Compute the Laadas (alpho=1) .
LAIDRCO) = ~(DUHK+1) ® TUWK,0)) /7 (2.0%(HK)); ;.{’.-‘
for J In 0..CWK=-1) loop o
if 1) /= 0.0 than o]
LAMDACU#1) = (DCMIK+1) © TCMKS1,001)) /7 €C2.0 *8(IK)) ® D(S*1)); S
else oo
LADAC+1) := 0.0; L.
end if; -
end loop;

— Load Pad(X) and Qu¢X) with their A and B coafficients respectively
for | iIn 0..N loop

CCR, 1) = RANK,A, 1);
end loop; KRN
for | In 0..K loop ]

CCB, 1) := RCK,B, 1); Lo
end loop; L
= Compute coefficients "A" of mmerator and "B" of dencminator
for J in 0..CHK=1) loop 3

for K in 0..23 loop -

RCJ,A,K) := RCJ,A,K) & LADRCI+1); N
C<A,K) := CCR,K) + RCJ,A,K); N
R¢J,B8,K) := RCJ,D,K) ¢ LANDACJ+1); [__'
C¢B,KY := CCB,K) + ACJ,B,K); )

and loop; 1
end loop; y
C(R,0) := C(A,0) + LAMDACD); X
for | in reversae 0..25 loop; 1

CCA, 1) := C(A,1)/C(B,0);

C<B, 1) := C(B, |)/C(8,0); *
end loop; ]

end COMPUTEOIK; R
-

and APPROX|1MATORS; j
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Captain Steven A. Hotchkiss was born on 8 February 1952 in Eureka,
Kansas. In May of 1970, he graduated from High School at Smith Center,
Kansas. He later entered the Nawy as an Aviation Antisubmarine warfare
Operator, and earned his Naval Aircrew Wings in November of 1974. After
being released from the Nawy in January of 1977, he attended Kansas State
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